We construct a solution of the Poisson equation in exterior domains $\Omega \subset \mathbb R^n,\;n \ge 2,$ in homogeneous Lebesgue spaces $L^{2,q}(\Omega),;1 < q <\infty,$ with methods of potential theory and integral equations. We investigate the corresponding null spaces and prove that its dimensions is equal to $n+1$ independent of $q$.
Poisson equation potential theory homogeneous Lebesgue spaces
Birincil Dil | İngilizce |
---|---|
Konular | Uygulamalı Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 15 Eylül 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 5 Sayı: 3 |