Araştırma Makalesi
BibTex RIS Kaynak Göster

Directs estimates and a Voronovskaja-type formula for Mihesan operators

Yıl 2022, Cilt: 5 Sayı: 4, 202 - 213, 01.12.2022
https://doi.org/10.33205/cma.1169884

Öz

We present an estimate for the rate of convergence of Mihesan operators in polynomial weighted spaces. A Voronovskaja-type theorem is included.

Kaynakça

  • P. N. Agrawal, M. Goyala: Generalized Baskakov Kantorovich operators, FILOMAT, 31 (19) (2017), 6131–6151.
  • P. N. Agrawal, V. Gupta, A. Sathish Kumar and A. Kajla: Generalized Baskakov-Szász type operators, Appl. Math. Comp., 236 (2014) 311–324.
  • J. Bustamante: Baskakov-Kantorovich operators reproducing affine functions, Stud. Univ. Babeş-Bolyai Math., 66 (4) (2021), 739–756.
  • J. Bustamante: Approximation of functions and Mihesan operators, to appear.
  • J. Bustamante, A. Carrillo-Zentella and J. M. Quesada, Direct and strong converse theorems for a sequence of positive linear operators, Acta Math. Hungar., 136 (1–2) (2012), 90–106.
  • J. Bustamante, L. Flores-de-Jesús: Strong converse inequalities and quantitative Voronovskaya-type theorems for trigonometric Fejér sums, Constr. Math. Anal., 3 (2) (2020), 53–63.
  • J. Bustamante, L. Flores-de-Jesús: Quantitative Voronovskaya-type theorems for Fejér-Korovkin operators, Constr. Math. Anal., 3 (4) (2020), 150–164.
  • J. Bustamante, J. J. Merino-García and J. M. Quesada: Baskakov operators and Jacobi weights: pointwise estimates, J. Inequal. Appl., 2021:119, (2021).
  • V. Mihesan: Uniform approximation with positive linear operators generated by generalized Baskakov method, Autmat. Comput. Appl. Math., 7 (1) (1998), 38–97.
  • A. Wafi, S. Khatoon: Direct and inverse theorems for generalized Baskakov operators in polynomial weight spaces, An. Ştiin¸t. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 50 (1) (2004), 159–173.
  • A. Wafi, S. Khatoon: On the order of approximation of functions by generalized Baskakov operators, Indian J. Pure Appl. Math., 35 (3) (2004), 347–358.
  • A. Wafi, S. Khatoon: The Voronovskaya theorem for generalized Baskakov-Kantorovich operators in polynomial weight spaces, Mat. Vesnik, 57 (3-4) (2005), 87–94.
  • A.Wafi, S. Khatoon: Convergence and Voronovskaja-type theorems for derivatives of generalized Baskakov operators, Cent. Eur. J. Math., 6 (2) (2008), 325–334.
Yıl 2022, Cilt: 5 Sayı: 4, 202 - 213, 01.12.2022
https://doi.org/10.33205/cma.1169884

Öz

Kaynakça

  • P. N. Agrawal, M. Goyala: Generalized Baskakov Kantorovich operators, FILOMAT, 31 (19) (2017), 6131–6151.
  • P. N. Agrawal, V. Gupta, A. Sathish Kumar and A. Kajla: Generalized Baskakov-Szász type operators, Appl. Math. Comp., 236 (2014) 311–324.
  • J. Bustamante: Baskakov-Kantorovich operators reproducing affine functions, Stud. Univ. Babeş-Bolyai Math., 66 (4) (2021), 739–756.
  • J. Bustamante: Approximation of functions and Mihesan operators, to appear.
  • J. Bustamante, A. Carrillo-Zentella and J. M. Quesada, Direct and strong converse theorems for a sequence of positive linear operators, Acta Math. Hungar., 136 (1–2) (2012), 90–106.
  • J. Bustamante, L. Flores-de-Jesús: Strong converse inequalities and quantitative Voronovskaya-type theorems for trigonometric Fejér sums, Constr. Math. Anal., 3 (2) (2020), 53–63.
  • J. Bustamante, L. Flores-de-Jesús: Quantitative Voronovskaya-type theorems for Fejér-Korovkin operators, Constr. Math. Anal., 3 (4) (2020), 150–164.
  • J. Bustamante, J. J. Merino-García and J. M. Quesada: Baskakov operators and Jacobi weights: pointwise estimates, J. Inequal. Appl., 2021:119, (2021).
  • V. Mihesan: Uniform approximation with positive linear operators generated by generalized Baskakov method, Autmat. Comput. Appl. Math., 7 (1) (1998), 38–97.
  • A. Wafi, S. Khatoon: Direct and inverse theorems for generalized Baskakov operators in polynomial weight spaces, An. Ştiin¸t. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 50 (1) (2004), 159–173.
  • A. Wafi, S. Khatoon: On the order of approximation of functions by generalized Baskakov operators, Indian J. Pure Appl. Math., 35 (3) (2004), 347–358.
  • A. Wafi, S. Khatoon: The Voronovskaya theorem for generalized Baskakov-Kantorovich operators in polynomial weight spaces, Mat. Vesnik, 57 (3-4) (2005), 87–94.
  • A.Wafi, S. Khatoon: Convergence and Voronovskaja-type theorems for derivatives of generalized Baskakov operators, Cent. Eur. J. Math., 6 (2) (2008), 325–334.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Jorge Bustamante 0000-0003-2856-6738

Yayımlanma Tarihi 1 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 4

Kaynak Göster

APA Bustamante, J. (2022). Directs estimates and a Voronovskaja-type formula for Mihesan operators. Constructive Mathematical Analysis, 5(4), 202-213. https://doi.org/10.33205/cma.1169884
AMA Bustamante J. Directs estimates and a Voronovskaja-type formula for Mihesan operators. CMA. Aralık 2022;5(4):202-213. doi:10.33205/cma.1169884
Chicago Bustamante, Jorge. “Directs Estimates and a Voronovskaja-Type Formula for Mihesan Operators”. Constructive Mathematical Analysis 5, sy. 4 (Aralık 2022): 202-13. https://doi.org/10.33205/cma.1169884.
EndNote Bustamante J (01 Aralık 2022) Directs estimates and a Voronovskaja-type formula for Mihesan operators. Constructive Mathematical Analysis 5 4 202–213.
IEEE J. Bustamante, “Directs estimates and a Voronovskaja-type formula for Mihesan operators”, CMA, c. 5, sy. 4, ss. 202–213, 2022, doi: 10.33205/cma.1169884.
ISNAD Bustamante, Jorge. “Directs Estimates and a Voronovskaja-Type Formula for Mihesan Operators”. Constructive Mathematical Analysis 5/4 (Aralık 2022), 202-213. https://doi.org/10.33205/cma.1169884.
JAMA Bustamante J. Directs estimates and a Voronovskaja-type formula for Mihesan operators. CMA. 2022;5:202–213.
MLA Bustamante, Jorge. “Directs Estimates and a Voronovskaja-Type Formula for Mihesan Operators”. Constructive Mathematical Analysis, c. 5, sy. 4, 2022, ss. 202-13, doi:10.33205/cma.1169884.
Vancouver Bustamante J. Directs estimates and a Voronovskaja-type formula for Mihesan operators. CMA. 2022;5(4):202-13.