A. M. Acu, P. Agrawal: Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2) (2019), 125–136.
A. M. Acu, I. Rasa: New estimates for the differences of positive linear operators, Numer. Algorithms, 73 (3) (2016), 775–789.
H. Berens, Y. Xu: On Bernstein-Durrmeyer polynomials with Jacobi weights, In Approximation Theory and Functional Analysis, (Edited by C. K. Chui), pp. 25–46, Acad. Press, Boston (1991).
L. Beutel, H. Gonska and D. Kacsó: Variation-diminishing splines revised, In Proceedings of International Symposium on Numerical Analysis and Approximation Theory, (Edited by R. Trâmbi¸ta¸s), pp. 54–75, Presa Universitar˘a Clujean˘a, Cluj-Napoka (2002).
W. Chen: On the modified Bernstein-Durrmeyer operator, Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou (China), (1987).
Z. Ditzian, K. G. Ivanov: Strong converse inequalities, J. Anal. Math., 61 (1993), 61–111.
H. Gonska, R. P˘alt˘anea: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (135) (2010), 783–799.
H. Gonska, R. P˘alt˘anea: Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913–922.
T. N. T. Goodman, A. Sharma: A modified Bernstein-Schoenberg operator, In Constructive Theory of Functions, Varna 1987, (Edited by Bl. Sendov et al.), pp. 166–173, Publ. House Bulg. Acad. of Sci., Sofia, (1988).
T. N. T. Goodman, A. Sharma: A Bernstein-type operator on the simplex, Math. Balkanica (New Series), 5 (2) (1991), 129–145.
K. G. Ivanov, P. E. Parvanov: Weighted approximation by the Goodman-Sharma operators, East J. Approx., 15 (4) (2009), 473–486.
G. G. Lorentz: Bernstein Polynomials, Mathematical Expositions 8, University of Toronto Press, (1953).
R. P˘alt˘anea: A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 5 (2007), 109–117.
P. E. Parvanov, B. D. Popov: The limit case of Bernstein’s operators with Jacobi weights, Math. Balkanica (N.S.), 8 (2–3) (1994), 165–177.
Higher order approximation of functions by modified Goodman-Sharma operators
Year 2024,
Volume: 7 Issue: 4, 180 - 195, 15.12.2024
Here we study the approximation properties of a modified Goodman-Sharma operator recently considered by Acu and Agrawal in [1]. This operator is linear but not positive. It has the advantage of a higher order of approximation of functions compared with the Goodman-Sharma operator. We prove direct and strong converse theorems in terms of a related K-functional.
This study is financed by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project No. BG-RRP-2.004-0008.
References
A. M. Acu, P. Agrawal: Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2) (2019), 125–136.
A. M. Acu, I. Rasa: New estimates for the differences of positive linear operators, Numer. Algorithms, 73 (3) (2016), 775–789.
H. Berens, Y. Xu: On Bernstein-Durrmeyer polynomials with Jacobi weights, In Approximation Theory and Functional Analysis, (Edited by C. K. Chui), pp. 25–46, Acad. Press, Boston (1991).
L. Beutel, H. Gonska and D. Kacsó: Variation-diminishing splines revised, In Proceedings of International Symposium on Numerical Analysis and Approximation Theory, (Edited by R. Trâmbi¸ta¸s), pp. 54–75, Presa Universitar˘a Clujean˘a, Cluj-Napoka (2002).
W. Chen: On the modified Bernstein-Durrmeyer operator, Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou (China), (1987).
Z. Ditzian, K. G. Ivanov: Strong converse inequalities, J. Anal. Math., 61 (1993), 61–111.
H. Gonska, R. P˘alt˘anea: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (135) (2010), 783–799.
H. Gonska, R. P˘alt˘anea: Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913–922.
T. N. T. Goodman, A. Sharma: A modified Bernstein-Schoenberg operator, In Constructive Theory of Functions, Varna 1987, (Edited by Bl. Sendov et al.), pp. 166–173, Publ. House Bulg. Acad. of Sci., Sofia, (1988).
T. N. T. Goodman, A. Sharma: A Bernstein-type operator on the simplex, Math. Balkanica (New Series), 5 (2) (1991), 129–145.
K. G. Ivanov, P. E. Parvanov: Weighted approximation by the Goodman-Sharma operators, East J. Approx., 15 (4) (2009), 473–486.
G. G. Lorentz: Bernstein Polynomials, Mathematical Expositions 8, University of Toronto Press, (1953).
R. P˘alt˘anea: A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 5 (2007), 109–117.
P. E. Parvanov, B. D. Popov: The limit case of Bernstein’s operators with Jacobi weights, Math. Balkanica (N.S.), 8 (2–3) (1994), 165–177.
Uluchev, R., Gadjev, I., & Parvanov, P. (2024). Higher order approximation of functions by modified Goodman-Sharma operators. Constructive Mathematical Analysis, 7(4), 180-195. https://doi.org/10.33205/cma.1563047
AMA
Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. December 2024;7(4):180-195. doi:10.33205/cma.1563047
Chicago
Uluchev, Rumen, Ivan Gadjev, and Parvan Parvanov. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis 7, no. 4 (December 2024): 180-95. https://doi.org/10.33205/cma.1563047.
EndNote
Uluchev R, Gadjev I, Parvanov P (December 1, 2024) Higher order approximation of functions by modified Goodman-Sharma operators. Constructive Mathematical Analysis 7 4 180–195.
IEEE
R. Uluchev, I. Gadjev, and P. Parvanov, “Higher order approximation of functions by modified Goodman-Sharma operators”, CMA, vol. 7, no. 4, pp. 180–195, 2024, doi: 10.33205/cma.1563047.
ISNAD
Uluchev, Rumen et al. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis 7/4 (December 2024), 180-195. https://doi.org/10.33205/cma.1563047.
JAMA
Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. 2024;7:180–195.
MLA
Uluchev, Rumen et al. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis, vol. 7, no. 4, 2024, pp. 180-95, doi:10.33205/cma.1563047.
Vancouver
Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. 2024;7(4):180-95.