Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 63 Sayı: 1, 27 - 60, 31.12.2021

Öz

Kaynakça

  • Bendaho, D., Driss, T.A., Bassou, D., Adsorption of acid dye onto activated Algerian clay, Bulletin of the Chemical Society of Ethiopia, 31 (1) (2017), 51–62. https://doi.org/10.4314/bcse.v31i1.5.
  • Bendaho, D., Driss, T.A., Bassou, D., Adsorption of acid dye onto activated Algerian clay, Bulletin of the Chemical Society of Ethiopia, 31 (1) (2017), 51–62. https://doi.org/10.4314/bcse.v31i1.5.
  • Benkhaya, S., M’ rabet, S., El Harfi, A., A review on classifications, recent synthesis and applications of textile dyes, Inorganic Chemistry Communications, 115 (2020),. https://doi.org/10.1016/j.inoche.2020.107891.
  • Benkhaya, S., M’ rabet, S., El Harfi, A., A review on classifications, recent synthesis and applications of textile dyes, Inorganic Chemistry Communications, 115 (2020),. https://doi.org/10.1016/j.inoche.2020.107891.
  • Zhang, J., Shi, Q., Zhang, C., Xu, J., Zhai, B., Zhang, B., Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis, Bioresource Technology, 99 (18) (2008), 8974–8980. https://doi.org/10.1016/j.biortech.2008.05.018.
  • Zhang, J., Shi, Q., Zhang, C., Xu, J., Zhai, B., Zhang, B., Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis, Bioresource Technology, 99 (18) (2008), 8974–8980. https://doi.org/10.1016/j.biortech.2008.05.018.
  • Iram, M., Guo, C., Guan, Y., Ishfaq, A., Liu, H., Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, Journal of Hazardous Materials, 181 (1–3) (2010), 1039–1050. https://doi.org/10.1016/j.jhazmat.2010.05.119.
  • Iram, M., Guo, C., Guan, Y., Ishfaq, A., Liu, H., Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, Journal of Hazardous Materials, 181 (1–3) (2010), 1039–1050. https://doi.org/10.1016/j.jhazmat.2010.05.119.
  • Wong, C.W., Barford, J.P., Chen, G., McKay, G., Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin, Journal of Environmental Chemical Engineering, 2 (1) (2014), 698–707. https://doi.org/10.1016/j.jece.2013.11.010.
  • Wong, C.W., Barford, J.P., Chen, G., McKay, G., Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin, Journal of Environmental Chemical Engineering, 2 (1) (2014), 698–707. https://doi.org/10.1016/j.jece.2013.11.010.
  • Alvarez, M.T., Crespo, C., Mattiasson, B., Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids, Chemosphere, 66 (9) (2007), 1677–1683. https://doi.org/10.1016/j.chemosphere.2006.07.065.
  • Alvarez, M.T., Crespo, C., Mattiasson, B., Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids, Chemosphere, 66 (9) (2007), 1677–1683. https://doi.org/10.1016/j.chemosphere.2006.07.065.
  • Gupta, V.K., Jain, R., Nayak, A., Agarwal, S., Shrivastava, M., Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface, Materials Science and Engineering C, 31 (5) (2011), 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006.
  • Gupta, V.K., Jain, R., Nayak, A., Agarwal, S., Shrivastava, M., Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface, Materials Science and Engineering C, 31 (5) (2011), 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006.
  • Qiu, Y.R., Mao, L.J., Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid, Desalination, 329 (2013), 78–85. https://doi.org/10.1016/j.desal.2013.09.012.
  • Qiu, Y.R., Mao, L.J., Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid, Desalination, 329 (2013), 78–85. https://doi.org/10.1016/j.desal.2013.09.012.
  • Mondal, N.K., Das, K., Das, B., Sadhukhan, B., Effective utilization of calcareous soil towards the removal of methylene blue from aqueous solution, Clean Technologies and Environmental Policy, 18 (3) (2016), 867–881. https://doi.org/10.1007/s10098-015-1065-z.
  • Mondal, N.K., Das, K., Das, B., Sadhukhan, B., Effective utilization of calcareous soil towards the removal of methylene blue from aqueous solution, Clean Technologies and Environmental Policy, 18 (3) (2016), 867–881. https://doi.org/10.1007/s10098-015-1065-z.
  • Shen, Z., Jin, F., Wang, F., McMillan, O., Al-Tabbaa, A., Sorption of lead by Salisbury biochar produced from British broadleaf hardwood, Bioresource Technology, 193 (2015), 553–556. https://doi.org/10.1016/j.biortech.2015.06.111.
  • Shen, Z., Jin, F., Wang, F., McMillan, O., Al-Tabbaa, A., Sorption of lead by Salisbury biochar produced from British broadleaf hardwood, Bioresource Technology, 193 (2015), 553–556. https://doi.org/10.1016/j.biortech.2015.06.111.
  • Afroze, S., Sen, T.K., Ang, M., Nishioka, H., Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism, Desalination and Water Treatment, 57 (13) (2016), 5858–5878. https://doi.org/10.1080/19443994.2015.1004115.
  • Afroze, S., Sen, T.K., Ang, M., Nishioka, H., Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism, Desalination and Water Treatment, 57 (13) (2016), 5858–5878. https://doi.org/10.1080/19443994.2015.1004115.
  • Gürses, A., Doǧar, Ç., Yalçin, M., Açikyildiz, M., Bayrak, R., Karaca, S., The adsorption kinetics of the cationic dye, methylene blue, onto clay, Journal of Hazardous Materials, 131 (1–3) (2006), 217–228. https://doi.org/10.1016/j.jhazmat.2005.09.036.
  • Gürses, A., Doǧar, Ç., Yalçin, M., Açikyildiz, M., Bayrak, R., Karaca, S., The adsorption kinetics of the cationic dye, methylene blue, onto clay, Journal of Hazardous Materials, 131 (1–3) (2006), 217–228. https://doi.org/10.1016/j.jhazmat.2005.09.036.
  • Fatiha, M., Belkacem, B., Adsorption of methylene blue from aqueous solutions using natural clay, J. Mater. Environ. Sci, 7 (1) (2016), 285–292.
  • Fatiha, M., Belkacem, B., Adsorption of methylene blue from aqueous solutions using natural clay, J. Mater. Environ. Sci, 7 (1) (2016), 285–292.
  • Ajala, O.J., Nwosu, F.O., Ahmed, R.K., Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays, Applied Water Science, 8 (7) (2018), 214. https://doi.org/10.1007/s13201-018-0855-y.
  • Ajala, O.J., Nwosu, F.O., Ahmed, R.K., Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays, Applied Water Science, 8 (7) (2018), 214. https://doi.org/10.1007/s13201-018-0855-y.
  • Caliskan, N., Sogut, E.G., Savran, A., Riza Kul, A., Kubilay, S., Removal of Cu(II) and Cd(II) ions from aqueous solutions using local raw material as adsorbent: a study in binary systems, (2017),. https://doi.org/10.5004/dwt.2017.20728.
  • Caliskan, N., Sogut, E.G., Savran, A., Riza Kul, A., Kubilay, S., Removal of Cu(II) and Cd(II) ions from aqueous solutions using local raw material as adsorbent: a study in binary systems, (2017),. https://doi.org/10.5004/dwt.2017.20728.
  • Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., Liu, J., Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes, Water Research, 44 (5) (2010), 1489–1497. https://doi.org/10.1016/j.watres.2009.10.042.
  • Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., Liu, J., Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes, Water Research, 44 (5) (2010), 1489–1497. https://doi.org/10.1016/j.watres.2009.10.042.
  • Kuila, U., Prasad, M., Specific surface area and pore-size distribution in clays and shales, Geophysical Prospecting, 61 (2013), 341–362. https://doi.org/10.1111/1365-2478.12028.
  • Kuila, U., Prasad, M., Specific surface area and pore-size distribution in clays and shales, Geophysical Prospecting, 61 (2013), 341–362. https://doi.org/10.1111/1365-2478.12028.
  • Taylor, R.K., Cation Exchange in Clays And Mudrocks By Methylene Blue, Journal of Chemical Technology and Biotechnology. Chemical Technology, 35 (4) (1985), 195–207. https://doi.org/10.1002/jctb.5040350407.
  • Taylor, R.K., Cation Exchange in Clays And Mudrocks By Methylene Blue, Journal of Chemical Technology and Biotechnology. Chemical Technology, 35 (4) (1985), 195–207. https://doi.org/10.1002/jctb.5040350407.
  • El-Hinnawi, E., Abayazeed, S.D., El-Hinnawi, E., Characterization of Egyptian Smectitic Clay Deposits by Methylene Blue Adsorption, American Journal of Applied Sciences, 8 (12) (2011), 1282–1286.
  • El-Hinnawi, E., Abayazeed, S.D., El-Hinnawi, E., Characterization of Egyptian Smectitic Clay Deposits by Methylene Blue Adsorption, American Journal of Applied Sciences, 8 (12) (2011), 1282–1286.
  • Duc, M., Gaboriaud, F., Thomas, F., Sensitivity of the acid-base properties of clays to the methods of preparation and measurement: 2. Evidence from continuous potentiometric titrations, Journal of Colloid and Interface Science, 289 (1) (2005), 148–156. https://doi.org/10.1016/j.jcis.2005.03.057.
  • Duc, M., Gaboriaud, F., Thomas, F., Sensitivity of the acid-base properties of clays to the methods of preparation and measurement: 2. Evidence from continuous potentiometric titrations, Journal of Colloid and Interface Science, 289 (1) (2005), 148–156. https://doi.org/10.1016/j.jcis.2005.03.057.
  • Ertaş, M., Acemioĝlu, B., Alma, M.H., Usta, M., Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust, Journal of Hazardous Materials, 183 (1–3) (2010), 421–427. https://doi.org/10.1016/j.jhazmat.2010.07.041.
  • Ertaş, M., Acemioĝlu, B., Alma, M.H., Usta, M., Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust, Journal of Hazardous Materials, 183 (1–3) (2010), 421–427. https://doi.org/10.1016/j.jhazmat.2010.07.041.
  • Foo, K.Y., Hameed, B.H., Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156 (2010), 2–10. https://doi.org/10.1016/j.cej.2009.09.013.
  • Foo, K.Y., Hameed, B.H., Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156 (2010), 2–10. https://doi.org/10.1016/j.cej.2009.09.013.
  • Salarirad, M.M., Behnamfard, A., Modeling of equilibrium data for free cyanide adsorption onto activated carbon by linear and non-linear regression methods, International Conference on Environment and Industrial Innovation, 12 (2011), 79–84.
  • Salarirad, M.M., Behnamfard, A., Modeling of equilibrium data for free cyanide adsorption onto activated carbon by linear and non-linear regression methods, International Conference on Environment and Industrial Innovation, 12 (2011), 79–84.
  • Rahman, M.S., Sathasivam, K. V., Heavy metal adsorption onto kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models, BioMed Research International, 2015 (2015),. https://doi.org/10.1155/2015/126298.
  • Rahman, M.S., Sathasivam, K. V., Heavy metal adsorption onto kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models, BioMed Research International, 2015 (2015),. https://doi.org/10.1155/2015/126298.
  • Samarghandi, M., Hadi, M., Moayedi, S., Askari, F.B., Adsorption of Heavy Metals from Waste Streams By Peat., Journal of Environmental Health Science & Engineering, 6 (4) (2009), 285–294. https://ijehse.tums.ac.ir/index.php/jehse/article/view/223 (accessed May 30, 2021).
  • Samarghandi, M., Hadi, M., Moayedi, S., Askari, F.B., Adsorption of Heavy Metals from Waste Streams By Peat., Journal of Environmental Health Science & Engineering, 6 (4) (2009), 285–294. https://ijehse.tums.ac.ir/index.php/jehse/article/view/223 (accessed May 30, 2021).
  • Wong, Y.C., Szeto, Y.S., Cheung, W.H., McKay, G., Equilibrium studies for acid dye adsorption onto chitosan, Langmuir, 19 (19) (2003), 7888–7894. https://doi.org/10.1021/la030064y.
  • Wong, Y.C., Szeto, Y.S., Cheung, W.H., McKay, G., Equilibrium studies for acid dye adsorption onto chitosan, Langmuir, 19 (19) (2003), 7888–7894. https://doi.org/10.1021/la030064y.
  • Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR Journal of Applied Chemistry, 3 (1) (2012), 38–45.
  • Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR Journal of Applied Chemistry, 3 (1) (2012), 38–45.
  • Yuh-Shan, H., Adsorption of Heavy Metals from Waste Streams By Peat, The University of Birmingham, 1995.
  • Yuh-Shan, H., Adsorption of Heavy Metals from Waste Streams By Peat, The University of Birmingham, 1995.
  • El-Sikaily, A., Nemr, A. El, Khaled, A., Abdelwehab, O., Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, Journal of Hazardous Materials, 148 (1–2) (2007), 216–228. https://doi.org/10.1016/j.jhazmat.2007.01.146.
  • El-Sikaily, A., Nemr, A. El, Khaled, A., Abdelwehab, O., Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, Journal of Hazardous Materials, 148 (1–2) (2007), 216–228. https://doi.org/10.1016/j.jhazmat.2007.01.146.
  • Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, K. Vet. Akad. Handl), 24 (1898), 1–39.
  • Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, K. Vet. Akad. Handl), 24 (1898), 1–39.
  • Al-Musawi, T.J., Brouers, F., Zarrabi, M., Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers–Sotolongo fractal equation, Environmental Science and Pollution Research, 24 (4) (2017), 4048–4057. https://doi.org/10.1007/s11356-016-8182-z.
  • Al-Musawi, T.J., Brouers, F., Zarrabi, M., Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers–Sotolongo fractal equation, Environmental Science and Pollution Research, 24 (4) (2017), 4048–4057. https://doi.org/10.1007/s11356-016-8182-z.
  • Gutzow, I., Todorova, S., Jordanov, N., Kinetics of chemical reactions and phase transitions at changing temperature: General reconsiderations and a new approach, (2010), 79–102.
  • Gutzow, I., Todorova, S., Jordanov, N., Kinetics of chemical reactions and phase transitions at changing temperature: General reconsiderations and a new approach, (2010), 79–102.
  • Gökırmak, E.S., Karataş, Y., Gülcan, M., Kılıç, N.Ç., Enhancement of adsorption capacity of reduced graphene oxide by sulfonic acid functionalization: Malachite green and Zn (II) uptake, Materials Chemistry and Physics, 256 (2020), 123662. https://doi.org/10.1016/j.matchemphys.2020.123662.
  • Gökırmak, E.S., Karataş, Y., Gülcan, M., Kılıç, N.Ç., Enhancement of adsorption capacity of reduced graphene oxide by sulfonic acid functionalization: Malachite green and Zn (II) uptake, Materials Chemistry and Physics, 256 (2020), 123662. https://doi.org/10.1016/j.matchemphys.2020.123662.
  • Vilvanathan, S., Shanthakumar, S., Ni2+ and Co2+ adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies, Environmental Technology (United Kingdom), 39 (4) (2018), 464–478. https://doi.org/10.1080/09593330.2017.1304454.
  • Vilvanathan, S., Shanthakumar, S., Ni2+ and Co2+ adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies, Environmental Technology (United Kingdom), 39 (4) (2018), 464–478. https://doi.org/10.1080/09593330.2017.1304454.
  • Robati, D., Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, Journal of Nanostructure in Chemistry, 3 (1) (2013), 1–6.
  • Robati, D., Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, Journal of Nanostructure in Chemistry, 3 (1) (2013), 1–6.
  • Aksu, Z., Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris, Process Biochemistry, 38 (1) (2002), 89–99. https://doi.org/10.1016/S0032-9592(02)00051-1.
  • Aksu, Z., Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris, Process Biochemistry, 38 (1) (2002), 89–99. https://doi.org/10.1016/S0032-9592(02)00051-1.
  • Li, Y.S., Liu, C.C., Chiou, C.S., Adsorption of Cr(III) from wastewater by wine processing waste sludge, Journal of Colloid and Interface Science, 273 (1) (2004), 95–101. https://doi.org/10.1016/j.jcis.2003.12.051.
  • Li, Y.S., Liu, C.C., Chiou, C.S., Adsorption of Cr(III) from wastewater by wine processing waste sludge, Journal of Colloid and Interface Science, 273 (1) (2004), 95–101. https://doi.org/10.1016/j.jcis.2003.12.051.
  • Mohellebi, F., Lakel, F., Adsorption of Zn2+ on Algerian untreated bentonite clay, Desalination and Water Treatment, 57 (13) (2016), 6051–6062. https://doi.org/10.1080/19443994.2015.1006255.
  • Mohellebi, F., Lakel, F., Adsorption of Zn2+ on Algerian untreated bentonite clay, Desalination and Water Treatment, 57 (13) (2016), 6051–6062. https://doi.org/10.1080/19443994.2015.1006255.
  • Sarikaya, Y., Önal, M., An indirect model for sintering thermodynamics, Turkish Journal of Chemistry, 40 (2016), 841 – 845. https://doi.org/10.3906/kim-1603-61.
  • Sarikaya, Y., Önal, M., An indirect model for sintering thermodynamics, Turkish Journal of Chemistry, 40 (2016), 841 – 845. https://doi.org/10.3906/kim-1603-61.
  • Errais, E., Duplay, J., Darragi, F., M’Rabet, I., Aubert, A., Huber, F., Morvan, G., Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters, Desalination, 275 (1–3) (2011), 74–81. https://doi.org/10.1016/j.desal.2011.02.031.
  • Errais, E., Duplay, J., Darragi, F., M’Rabet, I., Aubert, A., Huber, F., Morvan, G., Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters, Desalination, 275 (1–3) (2011), 74–81. https://doi.org/10.1016/j.desal.2011.02.031.
  • Rozalén, M., Brady, P. V., Huertas, F.J., Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics, Journal of Colloid and Interface Science, 333 (2) (2009), 474–484. https://doi.org/10.1016/j.jcis.2009.01.059.
  • Rozalén, M., Brady, P. V., Huertas, F.J., Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics, Journal of Colloid and Interface Science, 333 (2) (2009), 474–484. https://doi.org/10.1016/j.jcis.2009.01.059.
  • Worch, E., Adsorption Technology in Water Treatment, in: Adsorption Technology in Water Treatment, De Gruyter, Germany, 2012: pp. 1–345. https://doi.org/10.1515/9783110240238.
  • Worch, E., Adsorption Technology in Water Treatment, in: Adsorption Technology in Water Treatment, De Gruyter, Germany, 2012: pp. 1–345. https://doi.org/10.1515/9783110240238.
  • Belhouchat, N., Zaghouane-Boudiaf, H., Viseras, C., Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads, Applied Clay Science, 135 (2017), 9–15. https://doi.org/10.1016/j.clay.2016.08.031.
  • Belhouchat, N., Zaghouane-Boudiaf, H., Viseras, C., Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads, Applied Clay Science, 135 (2017), 9–15. https://doi.org/10.1016/j.clay.2016.08.031.
  • Caliskan, N., Kul, A.R., Alkan, S., Sogut, E.G., Alacabey, I., Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study, Journal of Hazardous Materials, 193 (2011), 27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058.
  • Caliskan, N., Kul, A.R., Alkan, S., Sogut, E.G., Alacabey, I., Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study, Journal of Hazardous Materials, 193 (2011), 27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058.
  • Miraboutalebi, S.M., Nikouzad, S.K., Peydayesh, M., Allahgholi, N., Vafajoo, L., McKay, G., Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis, Process Safety and Environmental Protection, 106 (2017), 191–202. https://doi.org/10.1016/j.psep.2017.01.010.
  • Miraboutalebi, S.M., Nikouzad, S.K., Peydayesh, M., Allahgholi, N., Vafajoo, L., McKay, G., Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis, Process Safety and Environmental Protection, 106 (2017), 191–202. https://doi.org/10.1016/j.psep.2017.01.010.
  • Sdiri, A., Khairy, M., Bouaziz, S., El-Safty, S., A natural clayey adsorbent for selective removal of lead from aqueous solutions, Applied Clay Science, 126 (2016), 89–97. https://doi.org/10.1016/j.clay.2016.03.003.
  • Sdiri, A., Khairy, M., Bouaziz, S., El-Safty, S., A natural clayey adsorbent for selective removal of lead from aqueous solutions, Applied Clay Science, 126 (2016), 89–97. https://doi.org/10.1016/j.clay.2016.03.003.
  • Smidt, E., Meissl, K., The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management, Waste Management, 27 (2) (2007), 268–276. https://doi.org/10.1016/j.wasman.2006.01.016.
  • Smidt, E., Meissl, K., The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management, Waste Management, 27 (2) (2007), 268–276. https://doi.org/10.1016/j.wasman.2006.01.016.
  • Zou, W., Bai, H., Gao, S., Competitive adsorption of neutral red and Cu2+ onto pyrolytic char: Isotherm and kinetic study, Journal of Chemical and Engineering Data, 57 (10) (2012), 2792–2801. https://doi.org/10.1021/je300686u.
  • Zou, W., Bai, H., Gao, S., Competitive adsorption of neutral red and Cu2+ onto pyrolytic char: Isotherm and kinetic study, Journal of Chemical and Engineering Data, 57 (10) (2012), 2792–2801. https://doi.org/10.1021/je300686u.
  • Pavan, F.A., Lima, E.C., Dias, S.L.P., Mazzocato, A.C., Methylene blue biosorption from aqueous solutions by yellow passion fruit waste, Journal of Hazardous Materials, 150 (3) (2008), 703–712. https://doi.org/10.1016/j.jhazmat.2007.05.023.
  • Pavan, F.A., Lima, E.C., Dias, S.L.P., Mazzocato, A.C., Methylene blue biosorption from aqueous solutions by yellow passion fruit waste, Journal of Hazardous Materials, 150 (3) (2008), 703–712. https://doi.org/10.1016/j.jhazmat.2007.05.023.
  • Ferrage, E., Lanson, B., Sakharov, B.A., Drits, V.A., Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I: Montmorillonite hydration properties, American Mineralogist, 90 (8–9) (2005), 1358–1374. https://doi.org/10.2138/am.2005.1776.
  • Ferrage, E., Lanson, B., Sakharov, B.A., Drits, V.A., Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I: Montmorillonite hydration properties, American Mineralogist, 90 (8–9) (2005), 1358–1374. https://doi.org/10.2138/am.2005.1776.
  • Garcia-Valles, M., Alfonso, P., Martínez, S., Roca, N., Mineralogical and thermal characterization of kaolinitic clays from terra alta (Catalonia, Spain), Minerals, 10 (2) (2020),. https://doi.org/10.3390/min10020142.
  • Garcia-Valles, M., Alfonso, P., Martínez, S., Roca, N., Mineralogical and thermal characterization of kaolinitic clays from terra alta (Catalonia, Spain), Minerals, 10 (2) (2020),. https://doi.org/10.3390/min10020142.
  • Arfaoui, S., Frini-Srasra, N., Srasra, E., Modelling of the adsorption of the chromium ion by modified clays, Desalination, 222 (1–3) (2008), 474–481. https://doi.org/10.1016/j.desal.2007.03.014.
  • Arfaoui, S., Frini-Srasra, N., Srasra, E., Modelling of the adsorption of the chromium ion by modified clays, Desalination, 222 (1–3) (2008), 474–481. https://doi.org/10.1016/j.desal.2007.03.014.
  • Adeniyi, F.I., Ogundiran, M.B., Hemalatha, T., Hanumantrai, B.B., Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques, SN Applied Sciences 2020 2:5, 2 (5) (2020), 1–14. https://doi.org/10.1007/S42452-020-2610-X.
  • Adeniyi, F.I., Ogundiran, M.B., Hemalatha, T., Hanumantrai, B.B., Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques, SN Applied Sciences 2020 2:5, 2 (5) (2020), 1–14. https://doi.org/10.1007/S42452-020-2610-X.
  • Thao, H.-M., Characterization of Clays and Clay Minerals for Industrial Applications: Substitution non-Natural Additives by Clays in UV Protection, Ernst-Moritz-Arndt-University Greifswald, 2006.
  • Thao, H.-M., Characterization of Clays and Clay Minerals for Industrial Applications: Substitution non-Natural Additives by Clays in UV Protection, Ernst-Moritz-Arndt-University Greifswald, 2006.
  • Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F., Tase, N., Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems, Chemical Engineering Journal, 172 (1) (2011), 37–46. https://doi.org/10.1016/j.cej.2011.05.015.
  • Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F., Tase, N., Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems, Chemical Engineering Journal, 172 (1) (2011), 37–46. https://doi.org/10.1016/j.cej.2011.05.015.
  • Laus, R., De Fávere, V.T., Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate, Bioresource Technology, 102 (19) (2011), 8769–8776. https://doi.org/10.1016/j.biortech.2011.07.057.
  • Laus, R., De Fávere, V.T., Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate, Bioresource Technology, 102 (19) (2011), 8769–8776. https://doi.org/10.1016/j.biortech.2011.07.057.
  • Tan, I.A.W., Ahmad, A.L., Hameed, B.H., Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, Journal of Hazardous Materials, 154 (1–3) (2008), 337–346. https://doi.org/10.1016/j.jhazmat.2007.10.031.
  • Tan, I.A.W., Ahmad, A.L., Hameed, B.H., Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, Journal of Hazardous Materials, 154 (1–3) (2008), 337–346. https://doi.org/10.1016/j.jhazmat.2007.10.031.
  • Gökırmak, S.E., Çalışkan, K.N., Isotherm and Kinetic Studies of Pb(II) Adsorption on Raw And Modified Diatomite By Using Non-Linear Regression Method, FRESENIUS ENVIRONMENTAL BULLETIN, 26 (4) (2017), 2720–2728.
  • Gökırmak, S.E., Çalışkan, K.N., Isotherm and Kinetic Studies of Pb(II) Adsorption on Raw And Modified Diatomite By Using Non-Linear Regression Method, FRESENIUS ENVIRONMENTAL BULLETIN, 26 (4) (2017), 2720–2728.
  • Kumar, K.V., Porkodi, K., Rocha, F., Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon, Journal of Hazardous Materials, 150 (1) (2008), 158–165. https://doi.org/10.1016/j.jhazmat.2007.09.020.
  • Kumar, K.V., Porkodi, K., Rocha, F., Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon, Journal of Hazardous Materials, 150 (1) (2008), 158–165. https://doi.org/10.1016/j.jhazmat.2007.09.020.
  • Al-Ghouti, M.A., Da’ana, D.A., Guidelines for the use and interpretation of adsorption isotherm models: A review, Journal of Hazardous Materials, 393 (2020), 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
  • Al-Ghouti, M.A., Da’ana, D.A., Guidelines for the use and interpretation of adsorption isotherm models: A review, Journal of Hazardous Materials, 393 (2020), 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
  • Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E., Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Cleaner Engineering and Technology, 1 (2020), 100032. https://doi.org/10.1016/j.clet.2020.100032.
  • Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E., Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Cleaner Engineering and Technology, 1 (2020), 100032. https://doi.org/10.1016/j.clet.2020.100032.
  • Plazinski, W., Dziuba, J., Rudzinski, W., Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity, Adsorption, 19 (5) (2013), 1055–1064. https://doi.org/10.1007/s10450-013-9529-0.
  • Plazinski, W., Dziuba, J., Rudzinski, W., Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity, Adsorption, 19 (5) (2013), 1055–1064. https://doi.org/10.1007/s10450-013-9529-0.
  • Ahmad, M.A., Ahmad Puad, N.A., Bello, O.S., Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation, Water Resources and Industry, 6 (2014), 18–35. https://doi.org/10.1016/j.wri.2014.06.002.
  • Ahmad, M.A., Ahmad Puad, N.A., Bello, O.S., Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation, Water Resources and Industry, 6 (2014), 18–35. https://doi.org/10.1016/j.wri.2014.06.002.
  • Inyinbor, A.A., Adekola, F.A., Olatunji, G.A., Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resources and Industry, 15 (2016), 14–27. https://doi.org/10.1016/j.wri.2016.06.001.
  • Inyinbor, A.A., Adekola, F.A., Olatunji, G.A., Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resources and Industry, 15 (2016), 14–27. https://doi.org/10.1016/j.wri.2016.06.001.
  • Al-Ghouti, M.A., Al-Absi, R.S., Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater, Scientific Reports, 10 (1) (2020), 1–18. https://doi.org/10.1038/s41598-020-72996-3.
  • Al-Ghouti, M.A., Al-Absi, R.S., Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater, Scientific Reports, 10 (1) (2020), 1–18. https://doi.org/10.1038/s41598-020-72996-3.
  • Haro, N.K., Dávila, I.V.J., Nunes, K.G.P., de Franco, M.A.E., Marcilio, N.R., Féris, L.A., Kinetic, equilibrium and thermodynamic studies of the adsorption of paracetamol in activated carbon in batch model and fixed-bed column, Applied Water Science, 11 (2) (2021), 38. https://doi.org/10.1007/s13201-020-01346-5.
  • Haro, N.K., Dávila, I.V.J., Nunes, K.G.P., de Franco, M.A.E., Marcilio, N.R., Féris, L.A., Kinetic, equilibrium and thermodynamic studies of the adsorption of paracetamol in activated carbon in batch model and fixed-bed column, Applied Water Science, 11 (2) (2021), 38. https://doi.org/10.1007/s13201-020-01346-5.
  • Saha, P., Chowdhury, S., Insight Into Adsorption Thermodynamics, Thermodynamics, (2011),. https://doi.org/10.5772/13474.
  • Saha, P., Chowdhury, S., Insight Into Adsorption Thermodynamics, Thermodynamics, (2011),. https://doi.org/10.5772/13474.
  • Boukhemkhem, A., Rida, K., Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin, Adsorption Science & Technology, 35 (9) (2017), 2017. https://doi.org/10.1177/0263617416684835.
  • Boukhemkhem, A., Rida, K., Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin, Adsorption Science & Technology, 35 (9) (2017), 2017. https://doi.org/10.1177/0263617416684835.
  • Banerjee, S., Chattopadhyaya, M.C., Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product, Arabian Journal of Chemistry, 10 (2017), S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005.
  • Banerjee, S., Chattopadhyaya, M.C., Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product, Arabian Journal of Chemistry, 10 (2017), S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005.

Adsorption of neutral red dye from aqueous solutions by natural adsorbent: an equilibrium, kinetic and thermodynamic study

Yıl 2021, Cilt: 63 Sayı: 1, 27 - 60, 31.12.2021

Öz

This study investigates the adsorption of neutral red (NR) on the natural clayey material of Adilcevaz/ Bitlis located the northwest of Van Lake in Eastern Anatolia (Turkey). The adsorbent used was characterized by XRD, XRF, FTIR, SEM and TG-DTA analyzes. The effect of various parameters such as pH, contact time, initial concentration and temperature on NR removal was investigated using a batch process to optimize the maximum adsorption conditions. Equilibrium data for NR adsorption were analyzed using nonlinear two-parameter isotherms such as Langmuir, Freundlich, Dubinin-Radushkevich, and Tempkin, and three-parameter isotherm models, such as nonlinear Redlich-Peterson, Sips, and Koble-Corrigan. The modelling results showed that it was best adapted to the Freundlich isotherm model for the NR dye, with relatively higher R2 values and smaller S.E. The maximum adsorption capacity obtained from the experimental data was determined to be 4.2810 mg g-1. The adsorption process follows pseudo-second-order kinetics with a rate constant of 0.0110 g mg-1 min-1. The thermodynamic parameters indicate that a physical mechanism controls the NR adsorption on the natural clay and spontaneously occurs.

Kaynakça

  • Bendaho, D., Driss, T.A., Bassou, D., Adsorption of acid dye onto activated Algerian clay, Bulletin of the Chemical Society of Ethiopia, 31 (1) (2017), 51–62. https://doi.org/10.4314/bcse.v31i1.5.
  • Bendaho, D., Driss, T.A., Bassou, D., Adsorption of acid dye onto activated Algerian clay, Bulletin of the Chemical Society of Ethiopia, 31 (1) (2017), 51–62. https://doi.org/10.4314/bcse.v31i1.5.
  • Benkhaya, S., M’ rabet, S., El Harfi, A., A review on classifications, recent synthesis and applications of textile dyes, Inorganic Chemistry Communications, 115 (2020),. https://doi.org/10.1016/j.inoche.2020.107891.
  • Benkhaya, S., M’ rabet, S., El Harfi, A., A review on classifications, recent synthesis and applications of textile dyes, Inorganic Chemistry Communications, 115 (2020),. https://doi.org/10.1016/j.inoche.2020.107891.
  • Zhang, J., Shi, Q., Zhang, C., Xu, J., Zhai, B., Zhang, B., Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis, Bioresource Technology, 99 (18) (2008), 8974–8980. https://doi.org/10.1016/j.biortech.2008.05.018.
  • Zhang, J., Shi, Q., Zhang, C., Xu, J., Zhai, B., Zhang, B., Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis, Bioresource Technology, 99 (18) (2008), 8974–8980. https://doi.org/10.1016/j.biortech.2008.05.018.
  • Iram, M., Guo, C., Guan, Y., Ishfaq, A., Liu, H., Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, Journal of Hazardous Materials, 181 (1–3) (2010), 1039–1050. https://doi.org/10.1016/j.jhazmat.2010.05.119.
  • Iram, M., Guo, C., Guan, Y., Ishfaq, A., Liu, H., Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, Journal of Hazardous Materials, 181 (1–3) (2010), 1039–1050. https://doi.org/10.1016/j.jhazmat.2010.05.119.
  • Wong, C.W., Barford, J.P., Chen, G., McKay, G., Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin, Journal of Environmental Chemical Engineering, 2 (1) (2014), 698–707. https://doi.org/10.1016/j.jece.2013.11.010.
  • Wong, C.W., Barford, J.P., Chen, G., McKay, G., Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin, Journal of Environmental Chemical Engineering, 2 (1) (2014), 698–707. https://doi.org/10.1016/j.jece.2013.11.010.
  • Alvarez, M.T., Crespo, C., Mattiasson, B., Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids, Chemosphere, 66 (9) (2007), 1677–1683. https://doi.org/10.1016/j.chemosphere.2006.07.065.
  • Alvarez, M.T., Crespo, C., Mattiasson, B., Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids, Chemosphere, 66 (9) (2007), 1677–1683. https://doi.org/10.1016/j.chemosphere.2006.07.065.
  • Gupta, V.K., Jain, R., Nayak, A., Agarwal, S., Shrivastava, M., Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface, Materials Science and Engineering C, 31 (5) (2011), 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006.
  • Gupta, V.K., Jain, R., Nayak, A., Agarwal, S., Shrivastava, M., Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface, Materials Science and Engineering C, 31 (5) (2011), 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006.
  • Qiu, Y.R., Mao, L.J., Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid, Desalination, 329 (2013), 78–85. https://doi.org/10.1016/j.desal.2013.09.012.
  • Qiu, Y.R., Mao, L.J., Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid, Desalination, 329 (2013), 78–85. https://doi.org/10.1016/j.desal.2013.09.012.
  • Mondal, N.K., Das, K., Das, B., Sadhukhan, B., Effective utilization of calcareous soil towards the removal of methylene blue from aqueous solution, Clean Technologies and Environmental Policy, 18 (3) (2016), 867–881. https://doi.org/10.1007/s10098-015-1065-z.
  • Mondal, N.K., Das, K., Das, B., Sadhukhan, B., Effective utilization of calcareous soil towards the removal of methylene blue from aqueous solution, Clean Technologies and Environmental Policy, 18 (3) (2016), 867–881. https://doi.org/10.1007/s10098-015-1065-z.
  • Shen, Z., Jin, F., Wang, F., McMillan, O., Al-Tabbaa, A., Sorption of lead by Salisbury biochar produced from British broadleaf hardwood, Bioresource Technology, 193 (2015), 553–556. https://doi.org/10.1016/j.biortech.2015.06.111.
  • Shen, Z., Jin, F., Wang, F., McMillan, O., Al-Tabbaa, A., Sorption of lead by Salisbury biochar produced from British broadleaf hardwood, Bioresource Technology, 193 (2015), 553–556. https://doi.org/10.1016/j.biortech.2015.06.111.
  • Afroze, S., Sen, T.K., Ang, M., Nishioka, H., Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism, Desalination and Water Treatment, 57 (13) (2016), 5858–5878. https://doi.org/10.1080/19443994.2015.1004115.
  • Afroze, S., Sen, T.K., Ang, M., Nishioka, H., Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism, Desalination and Water Treatment, 57 (13) (2016), 5858–5878. https://doi.org/10.1080/19443994.2015.1004115.
  • Gürses, A., Doǧar, Ç., Yalçin, M., Açikyildiz, M., Bayrak, R., Karaca, S., The adsorption kinetics of the cationic dye, methylene blue, onto clay, Journal of Hazardous Materials, 131 (1–3) (2006), 217–228. https://doi.org/10.1016/j.jhazmat.2005.09.036.
  • Gürses, A., Doǧar, Ç., Yalçin, M., Açikyildiz, M., Bayrak, R., Karaca, S., The adsorption kinetics of the cationic dye, methylene blue, onto clay, Journal of Hazardous Materials, 131 (1–3) (2006), 217–228. https://doi.org/10.1016/j.jhazmat.2005.09.036.
  • Fatiha, M., Belkacem, B., Adsorption of methylene blue from aqueous solutions using natural clay, J. Mater. Environ. Sci, 7 (1) (2016), 285–292.
  • Fatiha, M., Belkacem, B., Adsorption of methylene blue from aqueous solutions using natural clay, J. Mater. Environ. Sci, 7 (1) (2016), 285–292.
  • Ajala, O.J., Nwosu, F.O., Ahmed, R.K., Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays, Applied Water Science, 8 (7) (2018), 214. https://doi.org/10.1007/s13201-018-0855-y.
  • Ajala, O.J., Nwosu, F.O., Ahmed, R.K., Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays, Applied Water Science, 8 (7) (2018), 214. https://doi.org/10.1007/s13201-018-0855-y.
  • Caliskan, N., Sogut, E.G., Savran, A., Riza Kul, A., Kubilay, S., Removal of Cu(II) and Cd(II) ions from aqueous solutions using local raw material as adsorbent: a study in binary systems, (2017),. https://doi.org/10.5004/dwt.2017.20728.
  • Caliskan, N., Sogut, E.G., Savran, A., Riza Kul, A., Kubilay, S., Removal of Cu(II) and Cd(II) ions from aqueous solutions using local raw material as adsorbent: a study in binary systems, (2017),. https://doi.org/10.5004/dwt.2017.20728.
  • Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., Liu, J., Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes, Water Research, 44 (5) (2010), 1489–1497. https://doi.org/10.1016/j.watres.2009.10.042.
  • Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., Liu, J., Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes, Water Research, 44 (5) (2010), 1489–1497. https://doi.org/10.1016/j.watres.2009.10.042.
  • Kuila, U., Prasad, M., Specific surface area and pore-size distribution in clays and shales, Geophysical Prospecting, 61 (2013), 341–362. https://doi.org/10.1111/1365-2478.12028.
  • Kuila, U., Prasad, M., Specific surface area and pore-size distribution in clays and shales, Geophysical Prospecting, 61 (2013), 341–362. https://doi.org/10.1111/1365-2478.12028.
  • Taylor, R.K., Cation Exchange in Clays And Mudrocks By Methylene Blue, Journal of Chemical Technology and Biotechnology. Chemical Technology, 35 (4) (1985), 195–207. https://doi.org/10.1002/jctb.5040350407.
  • Taylor, R.K., Cation Exchange in Clays And Mudrocks By Methylene Blue, Journal of Chemical Technology and Biotechnology. Chemical Technology, 35 (4) (1985), 195–207. https://doi.org/10.1002/jctb.5040350407.
  • El-Hinnawi, E., Abayazeed, S.D., El-Hinnawi, E., Characterization of Egyptian Smectitic Clay Deposits by Methylene Blue Adsorption, American Journal of Applied Sciences, 8 (12) (2011), 1282–1286.
  • El-Hinnawi, E., Abayazeed, S.D., El-Hinnawi, E., Characterization of Egyptian Smectitic Clay Deposits by Methylene Blue Adsorption, American Journal of Applied Sciences, 8 (12) (2011), 1282–1286.
  • Duc, M., Gaboriaud, F., Thomas, F., Sensitivity of the acid-base properties of clays to the methods of preparation and measurement: 2. Evidence from continuous potentiometric titrations, Journal of Colloid and Interface Science, 289 (1) (2005), 148–156. https://doi.org/10.1016/j.jcis.2005.03.057.
  • Duc, M., Gaboriaud, F., Thomas, F., Sensitivity of the acid-base properties of clays to the methods of preparation and measurement: 2. Evidence from continuous potentiometric titrations, Journal of Colloid and Interface Science, 289 (1) (2005), 148–156. https://doi.org/10.1016/j.jcis.2005.03.057.
  • Ertaş, M., Acemioĝlu, B., Alma, M.H., Usta, M., Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust, Journal of Hazardous Materials, 183 (1–3) (2010), 421–427. https://doi.org/10.1016/j.jhazmat.2010.07.041.
  • Ertaş, M., Acemioĝlu, B., Alma, M.H., Usta, M., Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust, Journal of Hazardous Materials, 183 (1–3) (2010), 421–427. https://doi.org/10.1016/j.jhazmat.2010.07.041.
  • Foo, K.Y., Hameed, B.H., Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156 (2010), 2–10. https://doi.org/10.1016/j.cej.2009.09.013.
  • Foo, K.Y., Hameed, B.H., Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156 (2010), 2–10. https://doi.org/10.1016/j.cej.2009.09.013.
  • Salarirad, M.M., Behnamfard, A., Modeling of equilibrium data for free cyanide adsorption onto activated carbon by linear and non-linear regression methods, International Conference on Environment and Industrial Innovation, 12 (2011), 79–84.
  • Salarirad, M.M., Behnamfard, A., Modeling of equilibrium data for free cyanide adsorption onto activated carbon by linear and non-linear regression methods, International Conference on Environment and Industrial Innovation, 12 (2011), 79–84.
  • Rahman, M.S., Sathasivam, K. V., Heavy metal adsorption onto kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models, BioMed Research International, 2015 (2015),. https://doi.org/10.1155/2015/126298.
  • Rahman, M.S., Sathasivam, K. V., Heavy metal adsorption onto kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models, BioMed Research International, 2015 (2015),. https://doi.org/10.1155/2015/126298.
  • Samarghandi, M., Hadi, M., Moayedi, S., Askari, F.B., Adsorption of Heavy Metals from Waste Streams By Peat., Journal of Environmental Health Science & Engineering, 6 (4) (2009), 285–294. https://ijehse.tums.ac.ir/index.php/jehse/article/view/223 (accessed May 30, 2021).
  • Samarghandi, M., Hadi, M., Moayedi, S., Askari, F.B., Adsorption of Heavy Metals from Waste Streams By Peat., Journal of Environmental Health Science & Engineering, 6 (4) (2009), 285–294. https://ijehse.tums.ac.ir/index.php/jehse/article/view/223 (accessed May 30, 2021).
  • Wong, Y.C., Szeto, Y.S., Cheung, W.H., McKay, G., Equilibrium studies for acid dye adsorption onto chitosan, Langmuir, 19 (19) (2003), 7888–7894. https://doi.org/10.1021/la030064y.
  • Wong, Y.C., Szeto, Y.S., Cheung, W.H., McKay, G., Equilibrium studies for acid dye adsorption onto chitosan, Langmuir, 19 (19) (2003), 7888–7894. https://doi.org/10.1021/la030064y.
  • Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR Journal of Applied Chemistry, 3 (1) (2012), 38–45.
  • Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR Journal of Applied Chemistry, 3 (1) (2012), 38–45.
  • Yuh-Shan, H., Adsorption of Heavy Metals from Waste Streams By Peat, The University of Birmingham, 1995.
  • Yuh-Shan, H., Adsorption of Heavy Metals from Waste Streams By Peat, The University of Birmingham, 1995.
  • El-Sikaily, A., Nemr, A. El, Khaled, A., Abdelwehab, O., Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, Journal of Hazardous Materials, 148 (1–2) (2007), 216–228. https://doi.org/10.1016/j.jhazmat.2007.01.146.
  • El-Sikaily, A., Nemr, A. El, Khaled, A., Abdelwehab, O., Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, Journal of Hazardous Materials, 148 (1–2) (2007), 216–228. https://doi.org/10.1016/j.jhazmat.2007.01.146.
  • Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, K. Vet. Akad. Handl), 24 (1898), 1–39.
  • Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, K. Vet. Akad. Handl), 24 (1898), 1–39.
  • Al-Musawi, T.J., Brouers, F., Zarrabi, M., Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers–Sotolongo fractal equation, Environmental Science and Pollution Research, 24 (4) (2017), 4048–4057. https://doi.org/10.1007/s11356-016-8182-z.
  • Al-Musawi, T.J., Brouers, F., Zarrabi, M., Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers–Sotolongo fractal equation, Environmental Science and Pollution Research, 24 (4) (2017), 4048–4057. https://doi.org/10.1007/s11356-016-8182-z.
  • Gutzow, I., Todorova, S., Jordanov, N., Kinetics of chemical reactions and phase transitions at changing temperature: General reconsiderations and a new approach, (2010), 79–102.
  • Gutzow, I., Todorova, S., Jordanov, N., Kinetics of chemical reactions and phase transitions at changing temperature: General reconsiderations and a new approach, (2010), 79–102.
  • Gökırmak, E.S., Karataş, Y., Gülcan, M., Kılıç, N.Ç., Enhancement of adsorption capacity of reduced graphene oxide by sulfonic acid functionalization: Malachite green and Zn (II) uptake, Materials Chemistry and Physics, 256 (2020), 123662. https://doi.org/10.1016/j.matchemphys.2020.123662.
  • Gökırmak, E.S., Karataş, Y., Gülcan, M., Kılıç, N.Ç., Enhancement of adsorption capacity of reduced graphene oxide by sulfonic acid functionalization: Malachite green and Zn (II) uptake, Materials Chemistry and Physics, 256 (2020), 123662. https://doi.org/10.1016/j.matchemphys.2020.123662.
  • Vilvanathan, S., Shanthakumar, S., Ni2+ and Co2+ adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies, Environmental Technology (United Kingdom), 39 (4) (2018), 464–478. https://doi.org/10.1080/09593330.2017.1304454.
  • Vilvanathan, S., Shanthakumar, S., Ni2+ and Co2+ adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies, Environmental Technology (United Kingdom), 39 (4) (2018), 464–478. https://doi.org/10.1080/09593330.2017.1304454.
  • Robati, D., Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, Journal of Nanostructure in Chemistry, 3 (1) (2013), 1–6.
  • Robati, D., Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, Journal of Nanostructure in Chemistry, 3 (1) (2013), 1–6.
  • Aksu, Z., Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris, Process Biochemistry, 38 (1) (2002), 89–99. https://doi.org/10.1016/S0032-9592(02)00051-1.
  • Aksu, Z., Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris, Process Biochemistry, 38 (1) (2002), 89–99. https://doi.org/10.1016/S0032-9592(02)00051-1.
  • Li, Y.S., Liu, C.C., Chiou, C.S., Adsorption of Cr(III) from wastewater by wine processing waste sludge, Journal of Colloid and Interface Science, 273 (1) (2004), 95–101. https://doi.org/10.1016/j.jcis.2003.12.051.
  • Li, Y.S., Liu, C.C., Chiou, C.S., Adsorption of Cr(III) from wastewater by wine processing waste sludge, Journal of Colloid and Interface Science, 273 (1) (2004), 95–101. https://doi.org/10.1016/j.jcis.2003.12.051.
  • Mohellebi, F., Lakel, F., Adsorption of Zn2+ on Algerian untreated bentonite clay, Desalination and Water Treatment, 57 (13) (2016), 6051–6062. https://doi.org/10.1080/19443994.2015.1006255.
  • Mohellebi, F., Lakel, F., Adsorption of Zn2+ on Algerian untreated bentonite clay, Desalination and Water Treatment, 57 (13) (2016), 6051–6062. https://doi.org/10.1080/19443994.2015.1006255.
  • Sarikaya, Y., Önal, M., An indirect model for sintering thermodynamics, Turkish Journal of Chemistry, 40 (2016), 841 – 845. https://doi.org/10.3906/kim-1603-61.
  • Sarikaya, Y., Önal, M., An indirect model for sintering thermodynamics, Turkish Journal of Chemistry, 40 (2016), 841 – 845. https://doi.org/10.3906/kim-1603-61.
  • Errais, E., Duplay, J., Darragi, F., M’Rabet, I., Aubert, A., Huber, F., Morvan, G., Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters, Desalination, 275 (1–3) (2011), 74–81. https://doi.org/10.1016/j.desal.2011.02.031.
  • Errais, E., Duplay, J., Darragi, F., M’Rabet, I., Aubert, A., Huber, F., Morvan, G., Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters, Desalination, 275 (1–3) (2011), 74–81. https://doi.org/10.1016/j.desal.2011.02.031.
  • Rozalén, M., Brady, P. V., Huertas, F.J., Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics, Journal of Colloid and Interface Science, 333 (2) (2009), 474–484. https://doi.org/10.1016/j.jcis.2009.01.059.
  • Rozalén, M., Brady, P. V., Huertas, F.J., Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics, Journal of Colloid and Interface Science, 333 (2) (2009), 474–484. https://doi.org/10.1016/j.jcis.2009.01.059.
  • Worch, E., Adsorption Technology in Water Treatment, in: Adsorption Technology in Water Treatment, De Gruyter, Germany, 2012: pp. 1–345. https://doi.org/10.1515/9783110240238.
  • Worch, E., Adsorption Technology in Water Treatment, in: Adsorption Technology in Water Treatment, De Gruyter, Germany, 2012: pp. 1–345. https://doi.org/10.1515/9783110240238.
  • Belhouchat, N., Zaghouane-Boudiaf, H., Viseras, C., Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads, Applied Clay Science, 135 (2017), 9–15. https://doi.org/10.1016/j.clay.2016.08.031.
  • Belhouchat, N., Zaghouane-Boudiaf, H., Viseras, C., Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads, Applied Clay Science, 135 (2017), 9–15. https://doi.org/10.1016/j.clay.2016.08.031.
  • Caliskan, N., Kul, A.R., Alkan, S., Sogut, E.G., Alacabey, I., Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study, Journal of Hazardous Materials, 193 (2011), 27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058.
  • Caliskan, N., Kul, A.R., Alkan, S., Sogut, E.G., Alacabey, I., Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study, Journal of Hazardous Materials, 193 (2011), 27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058.
  • Miraboutalebi, S.M., Nikouzad, S.K., Peydayesh, M., Allahgholi, N., Vafajoo, L., McKay, G., Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis, Process Safety and Environmental Protection, 106 (2017), 191–202. https://doi.org/10.1016/j.psep.2017.01.010.
  • Miraboutalebi, S.M., Nikouzad, S.K., Peydayesh, M., Allahgholi, N., Vafajoo, L., McKay, G., Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis, Process Safety and Environmental Protection, 106 (2017), 191–202. https://doi.org/10.1016/j.psep.2017.01.010.
  • Sdiri, A., Khairy, M., Bouaziz, S., El-Safty, S., A natural clayey adsorbent for selective removal of lead from aqueous solutions, Applied Clay Science, 126 (2016), 89–97. https://doi.org/10.1016/j.clay.2016.03.003.
  • Sdiri, A., Khairy, M., Bouaziz, S., El-Safty, S., A natural clayey adsorbent for selective removal of lead from aqueous solutions, Applied Clay Science, 126 (2016), 89–97. https://doi.org/10.1016/j.clay.2016.03.003.
  • Smidt, E., Meissl, K., The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management, Waste Management, 27 (2) (2007), 268–276. https://doi.org/10.1016/j.wasman.2006.01.016.
  • Smidt, E., Meissl, K., The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management, Waste Management, 27 (2) (2007), 268–276. https://doi.org/10.1016/j.wasman.2006.01.016.
  • Zou, W., Bai, H., Gao, S., Competitive adsorption of neutral red and Cu2+ onto pyrolytic char: Isotherm and kinetic study, Journal of Chemical and Engineering Data, 57 (10) (2012), 2792–2801. https://doi.org/10.1021/je300686u.
  • Zou, W., Bai, H., Gao, S., Competitive adsorption of neutral red and Cu2+ onto pyrolytic char: Isotherm and kinetic study, Journal of Chemical and Engineering Data, 57 (10) (2012), 2792–2801. https://doi.org/10.1021/je300686u.
  • Pavan, F.A., Lima, E.C., Dias, S.L.P., Mazzocato, A.C., Methylene blue biosorption from aqueous solutions by yellow passion fruit waste, Journal of Hazardous Materials, 150 (3) (2008), 703–712. https://doi.org/10.1016/j.jhazmat.2007.05.023.
  • Pavan, F.A., Lima, E.C., Dias, S.L.P., Mazzocato, A.C., Methylene blue biosorption from aqueous solutions by yellow passion fruit waste, Journal of Hazardous Materials, 150 (3) (2008), 703–712. https://doi.org/10.1016/j.jhazmat.2007.05.023.
  • Ferrage, E., Lanson, B., Sakharov, B.A., Drits, V.A., Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I: Montmorillonite hydration properties, American Mineralogist, 90 (8–9) (2005), 1358–1374. https://doi.org/10.2138/am.2005.1776.
  • Ferrage, E., Lanson, B., Sakharov, B.A., Drits, V.A., Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I: Montmorillonite hydration properties, American Mineralogist, 90 (8–9) (2005), 1358–1374. https://doi.org/10.2138/am.2005.1776.
  • Garcia-Valles, M., Alfonso, P., Martínez, S., Roca, N., Mineralogical and thermal characterization of kaolinitic clays from terra alta (Catalonia, Spain), Minerals, 10 (2) (2020),. https://doi.org/10.3390/min10020142.
  • Garcia-Valles, M., Alfonso, P., Martínez, S., Roca, N., Mineralogical and thermal characterization of kaolinitic clays from terra alta (Catalonia, Spain), Minerals, 10 (2) (2020),. https://doi.org/10.3390/min10020142.
  • Arfaoui, S., Frini-Srasra, N., Srasra, E., Modelling of the adsorption of the chromium ion by modified clays, Desalination, 222 (1–3) (2008), 474–481. https://doi.org/10.1016/j.desal.2007.03.014.
  • Arfaoui, S., Frini-Srasra, N., Srasra, E., Modelling of the adsorption of the chromium ion by modified clays, Desalination, 222 (1–3) (2008), 474–481. https://doi.org/10.1016/j.desal.2007.03.014.
  • Adeniyi, F.I., Ogundiran, M.B., Hemalatha, T., Hanumantrai, B.B., Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques, SN Applied Sciences 2020 2:5, 2 (5) (2020), 1–14. https://doi.org/10.1007/S42452-020-2610-X.
  • Adeniyi, F.I., Ogundiran, M.B., Hemalatha, T., Hanumantrai, B.B., Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques, SN Applied Sciences 2020 2:5, 2 (5) (2020), 1–14. https://doi.org/10.1007/S42452-020-2610-X.
  • Thao, H.-M., Characterization of Clays and Clay Minerals for Industrial Applications: Substitution non-Natural Additives by Clays in UV Protection, Ernst-Moritz-Arndt-University Greifswald, 2006.
  • Thao, H.-M., Characterization of Clays and Clay Minerals for Industrial Applications: Substitution non-Natural Additives by Clays in UV Protection, Ernst-Moritz-Arndt-University Greifswald, 2006.
  • Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F., Tase, N., Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems, Chemical Engineering Journal, 172 (1) (2011), 37–46. https://doi.org/10.1016/j.cej.2011.05.015.
  • Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F., Tase, N., Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems, Chemical Engineering Journal, 172 (1) (2011), 37–46. https://doi.org/10.1016/j.cej.2011.05.015.
  • Laus, R., De Fávere, V.T., Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate, Bioresource Technology, 102 (19) (2011), 8769–8776. https://doi.org/10.1016/j.biortech.2011.07.057.
  • Laus, R., De Fávere, V.T., Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate, Bioresource Technology, 102 (19) (2011), 8769–8776. https://doi.org/10.1016/j.biortech.2011.07.057.
  • Tan, I.A.W., Ahmad, A.L., Hameed, B.H., Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, Journal of Hazardous Materials, 154 (1–3) (2008), 337–346. https://doi.org/10.1016/j.jhazmat.2007.10.031.
  • Tan, I.A.W., Ahmad, A.L., Hameed, B.H., Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, Journal of Hazardous Materials, 154 (1–3) (2008), 337–346. https://doi.org/10.1016/j.jhazmat.2007.10.031.
  • Gökırmak, S.E., Çalışkan, K.N., Isotherm and Kinetic Studies of Pb(II) Adsorption on Raw And Modified Diatomite By Using Non-Linear Regression Method, FRESENIUS ENVIRONMENTAL BULLETIN, 26 (4) (2017), 2720–2728.
  • Gökırmak, S.E., Çalışkan, K.N., Isotherm and Kinetic Studies of Pb(II) Adsorption on Raw And Modified Diatomite By Using Non-Linear Regression Method, FRESENIUS ENVIRONMENTAL BULLETIN, 26 (4) (2017), 2720–2728.
  • Kumar, K.V., Porkodi, K., Rocha, F., Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon, Journal of Hazardous Materials, 150 (1) (2008), 158–165. https://doi.org/10.1016/j.jhazmat.2007.09.020.
  • Kumar, K.V., Porkodi, K., Rocha, F., Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon, Journal of Hazardous Materials, 150 (1) (2008), 158–165. https://doi.org/10.1016/j.jhazmat.2007.09.020.
  • Al-Ghouti, M.A., Da’ana, D.A., Guidelines for the use and interpretation of adsorption isotherm models: A review, Journal of Hazardous Materials, 393 (2020), 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
  • Al-Ghouti, M.A., Da’ana, D.A., Guidelines for the use and interpretation of adsorption isotherm models: A review, Journal of Hazardous Materials, 393 (2020), 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
  • Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E., Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Cleaner Engineering and Technology, 1 (2020), 100032. https://doi.org/10.1016/j.clet.2020.100032.
  • Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E., Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Cleaner Engineering and Technology, 1 (2020), 100032. https://doi.org/10.1016/j.clet.2020.100032.
  • Plazinski, W., Dziuba, J., Rudzinski, W., Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity, Adsorption, 19 (5) (2013), 1055–1064. https://doi.org/10.1007/s10450-013-9529-0.
  • Plazinski, W., Dziuba, J., Rudzinski, W., Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity, Adsorption, 19 (5) (2013), 1055–1064. https://doi.org/10.1007/s10450-013-9529-0.
  • Ahmad, M.A., Ahmad Puad, N.A., Bello, O.S., Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation, Water Resources and Industry, 6 (2014), 18–35. https://doi.org/10.1016/j.wri.2014.06.002.
  • Ahmad, M.A., Ahmad Puad, N.A., Bello, O.S., Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation, Water Resources and Industry, 6 (2014), 18–35. https://doi.org/10.1016/j.wri.2014.06.002.
  • Inyinbor, A.A., Adekola, F.A., Olatunji, G.A., Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resources and Industry, 15 (2016), 14–27. https://doi.org/10.1016/j.wri.2016.06.001.
  • Inyinbor, A.A., Adekola, F.A., Olatunji, G.A., Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resources and Industry, 15 (2016), 14–27. https://doi.org/10.1016/j.wri.2016.06.001.
  • Al-Ghouti, M.A., Al-Absi, R.S., Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater, Scientific Reports, 10 (1) (2020), 1–18. https://doi.org/10.1038/s41598-020-72996-3.
  • Al-Ghouti, M.A., Al-Absi, R.S., Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater, Scientific Reports, 10 (1) (2020), 1–18. https://doi.org/10.1038/s41598-020-72996-3.
  • Haro, N.K., Dávila, I.V.J., Nunes, K.G.P., de Franco, M.A.E., Marcilio, N.R., Féris, L.A., Kinetic, equilibrium and thermodynamic studies of the adsorption of paracetamol in activated carbon in batch model and fixed-bed column, Applied Water Science, 11 (2) (2021), 38. https://doi.org/10.1007/s13201-020-01346-5.
  • Haro, N.K., Dávila, I.V.J., Nunes, K.G.P., de Franco, M.A.E., Marcilio, N.R., Féris, L.A., Kinetic, equilibrium and thermodynamic studies of the adsorption of paracetamol in activated carbon in batch model and fixed-bed column, Applied Water Science, 11 (2) (2021), 38. https://doi.org/10.1007/s13201-020-01346-5.
  • Saha, P., Chowdhury, S., Insight Into Adsorption Thermodynamics, Thermodynamics, (2011),. https://doi.org/10.5772/13474.
  • Saha, P., Chowdhury, S., Insight Into Adsorption Thermodynamics, Thermodynamics, (2011),. https://doi.org/10.5772/13474.
  • Boukhemkhem, A., Rida, K., Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin, Adsorption Science & Technology, 35 (9) (2017), 2017. https://doi.org/10.1177/0263617416684835.
  • Boukhemkhem, A., Rida, K., Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin, Adsorption Science & Technology, 35 (9) (2017), 2017. https://doi.org/10.1177/0263617416684835.
  • Banerjee, S., Chattopadhyaya, M.C., Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product, Arabian Journal of Chemistry, 10 (2017), S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005.
  • Banerjee, S., Chattopadhyaya, M.C., Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product, Arabian Journal of Chemistry, 10 (2017), S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005.
Toplam 138 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Research Articles
Yazarlar

Ali Rıza Kul 0000-0001-9331-775X

Eda Gökırmak Söğüt 0000-0002-7707-3924

Necla Çalışkan Kılıç 0000-0001-5451-3192

Yayımlanma Tarihi 31 Aralık 2021
Kabul Tarihi 16 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 63 Sayı: 1

Kaynak Göster

Vancouver Kul AR, Gökırmak Söğüt E, Çalışkan Kılıç N. Adsorption of neutral red dye from aqueous solutions by natural adsorbent: an equilibrium, kinetic and thermodynamic study. Commun. Fac. Sci. Univ. Ank. Ser. B. 2021;63(1):27-60.

Communications Faculty of Sciences University of Ankara Series B Chemistry and Chemical Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.