Türkiye’nin yıllık üretim değeri 750,000 ton olan kayısı, yüksek besleyici ve ekonomik değere sahip bir meyvedir. Kurutma işlemi, kayısının raf ömrünü uzatmanın yanı sıra tüketici tarafından tercih edilen bir ürün olan kuru kayısı üretme imkanını tanımaktadır. Kayısının kurutulması süreçlerinin gelişmiş yöntemlerle modellenebilmesi ürün işleyicilerin üretim planlama ve maliyet analizlerini yapmalarında büyük ölçüde yardımcı olabilir. Son yıllarda oldukça geniş kullanım alanı bulmuş bir makine öğrenmesi yöntemi olan Yapay Sinir Ağları (YSA), parametre ve fonksiyon tahmininden sınıflandırmaya kadar çeşitli görevlerde karmaşık problemlerin çözümünde kullanılmaktadır. Bu çalışmada geleneksel (sıcak hava ile), elektrohidrodinamik (EHD) ve EHD-sıcak hava kombinasyonu kurutma yöntemleri kullanılarak kurutulan kayısının farklı kurutma parametrelerinin kuruma hızı ve ürün nemi üzerine etkilerinin YSA ile modellenmesi amaçlanmıştır. Farklı transfer fonksiyonları ve öğrenme algoritmaları denenerek her bir kurutma yöntemi için en iyi model performansını veren YSA tespit edilmiştir. EHD-sıcak hava kombinasyonu ile kayısı kurutmada kuruma hızı ve nem tahminine ilişkin YSA modellerinin test verisi üzerindeki determinasyon katsayıları 0,96’dan yüksek değerler olarak saptanmıştır. Araştırma bulguları EHD yöntemi ile tarımsal ürün kurutmanın YSA esaslı yöntemlerle modellenebileceğini göstermiştir.
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Proje Numarası
117O793
Teşekkür
Bu çalışmayı 117O793 nolu proje kapsamında destekleyen Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)’na teşekkür ederiz.
Kaynakça
Alwazeer D., Örs B., 2019. Reducing Atmosphere Drying as a Novel Drying Technique for Preserving the Sensorial and Nutritional Notes of Foods. J. Food Sci. Technol., 56(8): 3790-3800.
Anonim, 2020 FAO (Food and Agriculture Organization of the United Nations) http://www.fao.org/faostat/en/#data/QC/visualize. Erişim Tarihi: 09.04.2020.
Beigi M., Torki-Harchegani M., Tohidi M., 2017. Experimental and ANN Modeling Investigations of Energy Traits for Rough Rice Drying. Energy,141: 2196-2205.
Chasiotis V. K., Tzempelikos D. A., Filios A. E., Moustris K. P., 2019. Artificial Neural Network Modelling of Moisture Content Evolution for Convective Drying of Cylindrical Quince Slices. Comput. Electron. Agr., 105074.
Deng L. Z., Pan Z., Mujumdar A. S., Zhao J. H., Zheng Z. A., Gao Z. J., Xiao H. W., 2019. High-Humidity Hot Air Impingement Blanching (HHAIB) Enhances Drying Quality of Apricots by Inactivating the Enzymes, Reducing Drying Time and Altering Cellular Structure. Food Control, 96: 104-111.
García-Martínez E., Igual M., Martín-Esparza M. E., Martínez-Navarrete N., 2013. Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment. Food Bioprocess Tech., 6(11): 3247-3255.
Garoosiha H., Ahmadi J., Bayat H., 2019. The Assessment of Levenberg–Marquardt and Bayesian Framework Training Algorithm for Prediction of Concrete Shrinkage by the Artificial Neural Network. Cogent Eng., 6(1): 1609179.
Ghaderi A., Abbasi S., Motevali A., Minaei S., 2012. Comparison of Mathematical Models and Artificial Neural Networks for Prediction of Drying Kinetics of Mushroom in Microwave-Vacuum Drier. Chem. Ind. Chem. Eng. Q., 18(2): 283-293.
Heaton. J., 2015. Introduction to Neural Networks for Java: Feedforward Backpropagation Neural Networks. http://www.heatonresearch.com/node/707. Erişim Tarihi: 04.12.2016.
Khazaei N. B., Tavakoli T., Ghassemian H., Khoshtaghaza M. H., Banakar A., 2013. Applied Machine Vision and Artificial Neural Network for Modeling and Controlling of the Grape Drying Process. Comput. Electron. Agr., 98: 205-213.
Krishna Murthy T. P., Manohar B., 2012. Microwave Drying of Mango Ginger (Curcuma Amada Roxb): Prediction of Drying Kinetics by Mathematical Modelling and Artificial Neural Network. International J. Food Sci. Technol., 47(6): 1229-1236.
Lertworasirikul S., Tipsuwan Y., 2008. Moisture Content and Water Activity Prediction of Semi-Finished Cassava Crackers from Drying Process with Artificial Neural Network. J. Food Eng., 84(1): 65-74.
Momenzadeh L., Zomorodian A., Mowla D., 2011. Experimental and Theoretical Investigation of Shelled Corn Drying in a Microwave-Assisted Fluidized Bed Dryer Using Artificial Neural Network. Food Bioprod Process., 89(1): 15-21.
Motevali A., Younji S., Chayjan R. A., Aghilinategh N., Banakar A., 2013. Drying Kinetics of Dill Leaves in a Convective Dryer. Int Agrophys., 27(1): 39.
Omid M, Mahmoudi A, Omid M H., 2009. An Intelligent System for Sorting Pistachio Nut Varieties. Expert Syst. App., 36(9): 11528–11535.
Poonnoy P., Tansakul A., Chinnan M., 2007. Artificial Neural Network Modeling for Temperature and Moisture Content Prediction in Tomato Slices Undergoing Microwave‐vacuum Drying. J. Food Sci., 72(1): E042-E047.
Priddy K.L., Keller P.E., 2005. Artificial Neural Networks: An Introduction (SPIE Tutorial Texts in Optical Engineering), The International Society for Optical Engineering, Bellingham, Washington, USA.
Vega-Gálvez A., Quispe-Fuentes I., Uribe E., Martinez-Monzo J., Pasten A., Lemus-Mondaca R., 2019. Bioactive Compounds and Physicochemical Characterization of Dried Apricot (Prunus Armeniaca L.) As Affected by Different Drying Temperatures. CYTA-J. Food., 17(1): 297-306.
Yousefi A., Asadi V., Nassiri S. M., Niakousari M., Aghdam S. K., 2013. Comparison of Mathematical and Neural Network Models in The Estimation of Papaya Fruit Moisture Content. Philipp. Agric. Sci., 95(3): 192-198.
Kurtulmuş, F., Polat, A., & İzli, N. (2020). Yapay Sinir Ağları Kullanarak Kayısının Farklı Kurutma Yöntemleriyle Kurutulmasında Kuruma Hızı Ve Nem İçeriği Parametrelerinin Modellenmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 8(2), 261-269. https://doi.org/10.33202/comuagri.733166