Araştırma Makalesi
BibTex RIS Kaynak Göster

Prediction of Ear Weight, Kernel Weight and Viability in Maize Using Image Analysis

Yıl 2023, Cilt: 11 Sayı: 2, 360 - 367, 28.12.2023
https://doi.org/10.33202/comuagri.1286700

Öz

Mısır ıslah çalışmalarında, görüntü analizleri ile koçan ve tane özelliklerinin belirlenmesi yaygınlaşmaktadır. Mevcut yöntemler, doğrudan görüntü analizi ile elde edilebilecek ölçümlere odaklanırken, ağırlık ve canlılık gibi farklı parametrelerin bu ölçümler kullanılarak tahmin edilip edilemeyeceği yeterince ele alınmamıştır. Bu çalışmanın amacı, görüntü analizlerinden çıkarılan özellikler (alan, çevre, çevre, genişlik, uzunluk) kullanılarak mısırda koçan ağırlığı (g), tane ağırlığı (g), tek tane ağırlığı (g) ve canlılık (1/0) durumunun tahminlenip tahminlenemeyeceğinin belirlenmesidir. Çalışmada 13 mısır genotipine ait 233 koçan ve 1242 tane örneği materyal olarak kullanılmıştır. Koçan örneklerinin dijital görüntüleri 5 MP kamera ile, çekirdek örneklerinden ise masaüstü tarayıcı ile alınmıştır. Kulak ağırlığı referans verileri (DV1) ve tane ağırlığı referans verileri (DV2), her numunenin hassas bir terazide tartılmasıyla elde edilmiştir. Tek tane ağırlıklarının ölçümleri ile tek tohum referans verileri (DV3) elde edilmiştir. Tane örnekleri kağıt çimlenme testine tabi tutulmuş ve canlılığa ilişkin referans veriler (DV4) oluşturulmuştur. Her bir referans veri seti için görüntü analizinden elde edilen özellikler (alan, çevre, genişlik, yükseklik) tahminleyici değişken olarak kullanılarak regresyon modelleri geliştirilmiştir. Çalışma sonucunda, görüntü analizinden çıkarılan parametreler yardımıyla koçan ağırlığı ve tane ağırlığı tahmin edilebildiği görülmüştür. Tek tane ağırlığının belirlenmesinde orta düzeyde başarı elde edilirken, mısırda tek taneden alınan morfometrik ölçümlere dayalı canlılık durumunun belirlenmesinin mümkün olmadığı tespit edilmiştir.

Kaynakça

  • Abràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics International. 11(7): 36-42.
  • Beyaz, A., Gerdan, D., 2021. Meta-learning-based prediction of different corn cultivars from color feature extraction. Journal of Agricultural Sciences. 27(1): 32-41.
  • Cirit, M., Kaya, F., Kiliç, N., Kahriman, F., 2022. Mısırda koçan ve tane ölçümlerinde kullanılan görüntü işleme yazılımlarından elde edilen sonuçların karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi. 33: 20-25.
  • Drıenovsky, R., Anghel, A., Sala, F., 2019. Model for corn kernels weight estimating based on mature corn ears dimensional parameters. Research Journal of Agricultural Science. 51(4): 51-60.
  • Doğan, A., Cüneyt, U.Y.A.K., Şensoy, R.İ.G., Keskin, N., 2018. Asma yaprak alanın belirlenmesinde farklı iki yöntemin karşılaştırılması. Yuzuncu Yıl University Journal of Agricultural Sciences. 28(3): 289-294.
  • Gierz L., Markowski, P., Chmielewski, B., 2021. Validation of an image-analysis-based method of measurement of the overall dimensions of seeds. Journal of Physics: Conference Series. 1736(1): 012007.
  • Hallauer, A.R., Russell W.A., Lamkey K R., 1988. Corn breeding, pp. 463–564 in Corn and Corn Improvement, edited by G. F. Sprague and J. W. Dudley. American Society of Agronomy, Madison, WI.
  • Kapadia, V.N., Sasidharan, N., Patil, K., 2017. Seed Image Analysis and Its Application in Seed Science Research. Advance in Biotechnology and Microbiology. 7(2): AIBM.MS.ID.555709.
  • Kiratiratanapruk, K., Sinthupinyo, W., 2011. Color and texture for corn seed classification by machine vision. In 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS) (pp. 1-5). 07-09 December 2011, Thailand.
  • Loddo, A., Di Ruberto, C., Vale, A.M.P.G., Ucchesu, M., Soares, J.M., Bacchetta, G., 2022. An effective and friendly tool for seed image analysis. The Visual Computer. arXiv:2103.17213v2.
  • Makanza, R., Zaman-Allah, M., Cairns, J. E., Eyre, J., Burgueño, J., Pacheco, Á., Diepenbrock, C., Magorokosho, C., Tarekegne, A., Olsen, M., Prasanna, B. M., 2018. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Plant Methods. 14(1): 1-13.
  • Prasanna, B. M., Chaikam, V., Mahuku, G., 2012. Doubled haploid technology in maize breeding: theory and practice. CIMMYT.
  • Revilla, P., Butrón, A., Malvar, R. A., Ordás, R. A., 1999. Relationships among kernel weight, early vigor, and growth in maize. Crop Science. 39(3): 654-658.
  • Sandhya, P., Patil, S.G., Radha, M., Djanaguiraman, M., Dheebakaran, G.A., 2021. Predicting yield attributes of maize through image processing. The Pharma Innovation Journal. SP-10(10): 761-767.
  • Tanabata, T., Shibaya, T., Hori, K., Ebana, K., Yano, M., 2012. SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology. 160(4): 1871-1880.
  • R Core Team, (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Wu, A., Zhu, J., Yang, Y., Liu, X., Wang, X., Wang, L., Zhang, H., Chen, J., 2018. Classification of corn kernels grades using image analysis and support vector machine. Advances in Mechanical Engineering. 10(12): doi:10.1177/1687814018817642.
  • Yafie, H. A., Rachmawati, E., Prakasa, E., Nur, A., 2020. Corn seeds identification based on shape and colour features. Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika. 6(2): 66-72.
  • Yaman, F., Kahriman, F., 2022. Classification of viable/non-viable seeds of specialty maize genotypes using spectral and image data plus morphological features. Journal of Crop Improvement. 36(2): 285-300.
  • Zhu, F., Paul, P., Hussain, W., Wallman, K., Dhatt, B.K., Sandhu, J., Irvin, L., Morota, G., Yu, H., Walia, H., 2021. SeedExtractor: An open-source GUI for seed image analysis. Frontiers in Plant Science. 11: 581546.

Prediction of Ear Weight, Kernel Weight and Viability in Maize Using Image Analysis

Yıl 2023, Cilt: 11 Sayı: 2, 360 - 367, 28.12.2023
https://doi.org/10.33202/comuagri.1286700

Öz

In maize breeding studies, it is becoming common to determine the ear and kernel characteristics by image analysis. While current methods focus on measurements that can be obtained directly by image analysis, it has not been adequately addressed whether different parameters such as weight and viability can be estimated using these measurements. This study aimed to determine whether it is possible to estimate the ear weight (g), kernel weight (g), single kernel weight (g) and viability (1/0) status of maize with the help of features (area, perimeter, width, length) extracted from images of the ear and kernel samples. In this study, 233 ear and 1242 grain samples belonging to 13 maize genotypes were used as material. Digital images of the ear samples were taken with a 5 MP camera and from the kernel samples with a desktop scanner. The ear weight reference data (DV1) and the kernel weight reference data (DV2) were obtained by weighing each sample on a precision balance. Single kernel reference data (DV3) was obtained with the measurements of single kernel weights. Kernel samples underwent paper germination test and reference data (DV4) related to viability was created. Regression models were developed by using the features obtained from image analysis (area, perimeter, width, height) for each reference data set as the predictor variable. As a result of the study, it was seen that the ear weight and kernel weight can be estimated with the help of the parameters extracted from the image analysis. While moderate success was achieved in the determination of single seed weight, it was difficult to determine the viability status based on the morphometric measurements of a single kernel in maize.

Kaynakça

  • Abràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics International. 11(7): 36-42.
  • Beyaz, A., Gerdan, D., 2021. Meta-learning-based prediction of different corn cultivars from color feature extraction. Journal of Agricultural Sciences. 27(1): 32-41.
  • Cirit, M., Kaya, F., Kiliç, N., Kahriman, F., 2022. Mısırda koçan ve tane ölçümlerinde kullanılan görüntü işleme yazılımlarından elde edilen sonuçların karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi. 33: 20-25.
  • Drıenovsky, R., Anghel, A., Sala, F., 2019. Model for corn kernels weight estimating based on mature corn ears dimensional parameters. Research Journal of Agricultural Science. 51(4): 51-60.
  • Doğan, A., Cüneyt, U.Y.A.K., Şensoy, R.İ.G., Keskin, N., 2018. Asma yaprak alanın belirlenmesinde farklı iki yöntemin karşılaştırılması. Yuzuncu Yıl University Journal of Agricultural Sciences. 28(3): 289-294.
  • Gierz L., Markowski, P., Chmielewski, B., 2021. Validation of an image-analysis-based method of measurement of the overall dimensions of seeds. Journal of Physics: Conference Series. 1736(1): 012007.
  • Hallauer, A.R., Russell W.A., Lamkey K R., 1988. Corn breeding, pp. 463–564 in Corn and Corn Improvement, edited by G. F. Sprague and J. W. Dudley. American Society of Agronomy, Madison, WI.
  • Kapadia, V.N., Sasidharan, N., Patil, K., 2017. Seed Image Analysis and Its Application in Seed Science Research. Advance in Biotechnology and Microbiology. 7(2): AIBM.MS.ID.555709.
  • Kiratiratanapruk, K., Sinthupinyo, W., 2011. Color and texture for corn seed classification by machine vision. In 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS) (pp. 1-5). 07-09 December 2011, Thailand.
  • Loddo, A., Di Ruberto, C., Vale, A.M.P.G., Ucchesu, M., Soares, J.M., Bacchetta, G., 2022. An effective and friendly tool for seed image analysis. The Visual Computer. arXiv:2103.17213v2.
  • Makanza, R., Zaman-Allah, M., Cairns, J. E., Eyre, J., Burgueño, J., Pacheco, Á., Diepenbrock, C., Magorokosho, C., Tarekegne, A., Olsen, M., Prasanna, B. M., 2018. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Plant Methods. 14(1): 1-13.
  • Prasanna, B. M., Chaikam, V., Mahuku, G., 2012. Doubled haploid technology in maize breeding: theory and practice. CIMMYT.
  • Revilla, P., Butrón, A., Malvar, R. A., Ordás, R. A., 1999. Relationships among kernel weight, early vigor, and growth in maize. Crop Science. 39(3): 654-658.
  • Sandhya, P., Patil, S.G., Radha, M., Djanaguiraman, M., Dheebakaran, G.A., 2021. Predicting yield attributes of maize through image processing. The Pharma Innovation Journal. SP-10(10): 761-767.
  • Tanabata, T., Shibaya, T., Hori, K., Ebana, K., Yano, M., 2012. SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology. 160(4): 1871-1880.
  • R Core Team, (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Wu, A., Zhu, J., Yang, Y., Liu, X., Wang, X., Wang, L., Zhang, H., Chen, J., 2018. Classification of corn kernels grades using image analysis and support vector machine. Advances in Mechanical Engineering. 10(12): doi:10.1177/1687814018817642.
  • Yafie, H. A., Rachmawati, E., Prakasa, E., Nur, A., 2020. Corn seeds identification based on shape and colour features. Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika. 6(2): 66-72.
  • Yaman, F., Kahriman, F., 2022. Classification of viable/non-viable seeds of specialty maize genotypes using spectral and image data plus morphological features. Journal of Crop Improvement. 36(2): 285-300.
  • Zhu, F., Paul, P., Hussain, W., Wallman, K., Dhatt, B.K., Sandhu, J., Irvin, L., Morota, G., Yu, H., Walia, H., 2021. SeedExtractor: An open-source GUI for seed image analysis. Frontiers in Plant Science. 11: 581546.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Onurcan Nesrin 0000-0002-6687-4582

Fatih Kahrıman 0000-0001-6944-0512

Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 2

Kaynak Göster

APA Nesrin, O., & Kahrıman, F. (2023). Prediction of Ear Weight, Kernel Weight and Viability in Maize Using Image Analysis. ÇOMÜ Ziraat Fakültesi Dergisi, 11(2), 360-367. https://doi.org/10.33202/comuagri.1286700