BibTex RIS Cite

PEI-M [M:Cu(II) and Co(II)] Hydrogel Catalyst For Methyl Orange Degradation And Epinephrine Oxidation

Year 2015, Volume: 1 Issue: 1, 1 - 26, 29.12.2015
https://doi.org/10.28979/comufbed.307878

Abstract

Here, we report the catalytic activity of catalyst derived from polyethylene imine-M (II) (PEI-M: Cu(II), and Co(II)) hydrogel composite in the presence of H2Oas an oxidant. The PEI-Cu(II)/H2O2 heterogeneous composite was used in the degradation of an azo-dye, methyl orange (MO) in aqueous solution. In the presence of 63 mM H2O2, 100% of MO was removed in 80 min. The kinetics investigation of the processes demonstrated a pseudo-first-order kinetic model was applicable. Additionally, a pharmaceutical product, epinephrine (EP) was partially oxidized to adrenochrome by PEI-Co(II)/H2O2 hydrogel composite system. About 50% of conversion to adrenochrome was reached in less than 55 min again comply with the pseudo-first-order kinetic model. Both MO and EP oxidation reaction provided mild activation energies, 44.09, and 58.02 kj.mol-1, respectively. Various parameters effecting MO and EP oxidation were investigated.

References

  • Akbal, F. (2005). Photocatalytic degradation of organic dyes in the presence of titatium dioxide under UV and solar light: effect of operational parameters. Environment Progress, 24, 317–322.
  • Baldrian, P., Merhautova´, V., Gabriel, J., Nerud, F., Stopka, P., Hruby, M., Benes, M.J. (2006). Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxide. Applied Catalysis B: Environmental, 66, 258-264.
  • Bamoharram, F.F., Heravi, M.M., Roushani, M., Toosi, M.R., Jodeyre, L. (2009). Synthesis and characterization of silica-supported preyssler nanoparticles and its catalytic activity for photodegradation of methyl orange. Green Chemistry Letters and Reviews, 2, 35–41.
  • Centi, G., Ciambelli, P., Perathoner, S., Russo, P. (2002). Environmental catalysis: trends and outlook. Catalysis Today, 75, 3–15.
  • Chen, D., Chen, J., Luan, X., Ji, H., Xia, Z. (2011). Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chemical Engineering Journal, 171, 1150–1158.
  • Demirci, S., Sahiner, N. (2014a). PEI-based ionic liquid colloids for versatine use: Biomedical and environmental applications. Journal of Molecular Liquids, 194, 85–92.
  • Demirci, S., Sahiner, N. (2014b). Superior reusability of metal catalysts prepared within poly(ethylene imine) microgels for H2 production from NaBH4 hydrolysis. Fuel Processing Technology, 127, 88–96.
  • Dempsey, E., Kennedy, A., Fay, N., McCormac, T. (2003). Investigations into heteropolyanions as electrocatalysts for the oxidation of adrenaline. Electroanalysis, 15, 1835–1842.
  • Fan, J., Guo, Y., Wang, J., Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166, 904–910.
  • Farzaneh, F., Majidian, M., Ghandi, M. (1999). The oxyfunctionalizations of cyclohexane catalyzed by Mn(II) complexes included in zeolite Y. Journal of Molecular Catalysis A: Chemistry, 148, 227–233.
  • Feng, J., Hu, X., Yue, P.L. (2004). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of orange II. Environmental Science and Technology, 38, 269–275.
  • Gemeay, A.H., Mansour, I.A., El Sharkawy, R.G., Zaki, A.B. (2003). Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine. Journal of Molecular Catalysis A: Chemical, 193, 109–120.
  • Guo, J., Al Dahhan, M. (2003). Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Industrial Engineering Chemical Research, 42, 2450–2460.
  • Idel-aouad, R., Valiente, M., Yacoubi, A., Tanouti, B., López-Mesas, M. (2011). Rapid decolourization and mineralization of the zo dye C.I. Acid red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745–750.
  • Jiang, R., Zhu, H., Yao, J., Fu, Y., Guan, Y. (2012). Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Applied Surface Science, 258, 3513–3518.
  • Jose, J., John, M., Gigimol, M.G., Mathew, B. (2003). Synthesis, characterization, and catalytic activity of crosslinked poly(N-vinyl-2-pyrollidone acrylc acid) copolymer-metal complexes. Journal of Apllied Polymer Science, 90, 895–904.
  • Keresztessy, Z., Bodnar, M., Ber, E., Hadju, I., Zhang, M., Hartmann, J.F., Minko, T., Borbely, J. (2009). Self-assembling chitosan/poly-γ-glutamic acid nanoparticles for targeted drug delivery. Colloid Polymer Science, 287, 759-765.
  • Kitamura, Y., Mifune, M., Takatsuki, T., Iwasaki, T., Kawamoto, M., Iwado, A., Chikuma, M., Saito, Y. (2008). Ion-exchange resins modified with metal-pprphyrin as a catalysis for oxidation of epinephrine (adrenaline). Catalysis Communication, 9, 224–228.
  • Lupanoa, L.V.L., Martínezb, J.M.L., Piehld, L.L., de Celis, E.R., Dall’ Orto, V.C. (2013). Activation of H2O2 and superoxide production using a novel cobalt complex based on a polyampholyte. Applied Catalysis A: General, 467, 342–354.
  • Maury, M.R., Saini, P., Haldar, C., Avecilla, F. (2012). Synthesis, characterization and catalytic activities of manganese(III) complexes of pyridoxal-based ONNO donor tetradenatate ligands. Polyhedron, 31, 710–720.
  • Mittal, A., Malviya, A., Kaur, D., Mittal, J., Kurup, L. (2007). Studieson the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from waste waters using waste materials. Journal of Hazardous Materials, 148, 229–240.
  • Nezamzadeh-Ejhieh, A., Moazzeni, N. (2013). Sunlight photodecolorization of a mixture of methyl orange and bromocresol green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. Journal of Industrial Engineering Chemistry, 19, 1433–1442.
  • Ni, J.A., Ju, H.X., Chen, H.Y., Leech, D. (1999). Amperometric determination of epinephrine with and osmium complex and Nafion double-layer membrane modified electrode. Analytical Chimica Acta, 378, 151–157.
  • Ozay, O., Akcali, A., Otkun, M.T., Silan, C., Aktas, N., Sahiner, N. (2010). P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids and Surfaces B: Biointerfaces, 79, 460–466.
  • Rafiquee, M.Z.A., Siddiqui, M.R., Ali, M.S., Al-Lohedan, H.A. (2014). Spectrophotometric investigation on the kinetics of oxidation of adrenaline by dioxygen of μ-dioxytetrakis(histidinato)-dicobalt(II) complex. Spectrochimica Acta Part A: Molecular ve Biomolecular Spectroscopy, 126, 21–27.
  • Sahiner, N. (2013). Preparation of poly(ethylene imine) particles for versatile applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433, 212–218.
  • Szigyártó, Cs., Szabó, L., Simándi, L.I. (2013). Kinetic studies on the manganese(II) complex catalyzed oxidation of epinephrine, Journal of Molecular Catalysis A: Chemical, 372, 66–71.
  • Taei, M., Jamshidi, M. (2014). Highly selective determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(Adizol Black B)-modified glassy carbon electrode. Journal of Sold State Electrochemistry, 18, 673–683.
  • Tang, W.Z., Chen, R.Z. (1996). Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere, 32, 947–958.
  • Tao, Z., Wang, G., Goodisman, J., Asefa, T. (2009). Accelerated oxidation of epinephrine by silica nanoparticles. Langmuir, 25, 10183–10188.
  • Victoria, L., Lupano, L., Martínez, J.M.L., Piehl, L.L., Celis, E.R., Sánchez, R.M.T., Orto, V.C.D. (2014). Synthesis, characterization, and catalytic properties of cationic hydrogels containing copper(II) and cobalt(II) ions. Langmuir, 30, 2903−2913.
  • Wang, S., Gong, Q., Liang, J. (2009). Sono photocatalytic degradation of methyl orange by carbon nanotube/TiO2 in aqueous solutions. Ultrasonic Sonochemistry, 16, 205–208.
  • Wu, R.C., Qu, J.H. (2004). Removal of azo dye from water by magnetite adsorption-fenton oxidation. Water Environment Research, 76, 2637–2642.
  • Xu, H.Y., Liu, W.C., Qi, S.Y., Li, Y., Zhao, Y., Li, J.W. (2014). Kinetics and optimization of the decolorization of dyeing wastewater by a schorl-catalyzed fenton-like reaction. Journal of Serbian Chemical Society, 79, 361–377.
  • Yuan, S., Li, Y., Zhang, Q., Wang, H. (2009). ZnO nanorods decorated calcined Mg-Al layered double hydroxides as photocatalysts with a high adsorptive capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 76–81.
  • Zaghouane-Boudiaf, H., Boutahala, M., Arab, L. (2012). Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chemical Engineering Journal, 187, 142–149.

Metil Oranj Bozunması ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) ve Co(II)] Hidrojel Katalizör

Year 2015, Volume: 1 Issue: 1, 1 - 26, 29.12.2015
https://doi.org/10.28979/comufbed.307878

Abstract

Bu çalışmada, Polietilenimin-M(II) (PEI-M: Cu(II) ve Co(II)) hidrojel kompozitlerinin H2O2 indirgeyici olarak kullanılıdığı reaksiyonlarda katalitik aktiviteleri incelendi. Buna göre, PEI-Cu/H2O2 heterojen kompozitleri metil oranjın sulu çözeltisinde (MO) bozunma reaksiyonunda katalizör olarak kullanıldı. Metil oranj, 63 mM H2O2 varlı- ğında %100 olarak 80 dakikada ortamdan uzaklaştırıldı. Metil oranj bozunma reaksiyonunun kinetik çalışmalarında pseudo birinci dereceden kinetik modele uygulanabilir olduğu gösterildi. Bunlara ek olarak, bir ilaç olan epinefrin (adrenalin), PEI-Co(II)/H2O2 hidrojel kompozit sistemi varlığında adrenokrom'a yükseltgendi. Epinefrin'in yaklaşık %50'si 55 dakikadan daha az bir sürede adrenokroma dö- nüştürüldü ve pseudo birinci dereceden kinetik modele uygulanabilir olduğu gösterildi. MO ve EP yükseltgenmesi reaksiyonlarının aktivasyon enerjileri sırasıyla 44,09 ve 58,02 Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3 kj.mol-1 olarak hesaplandı. MO ve EP oksidasyonuna etki eden çeşitli parametreler çalışıldı. 

References

  • Akbal, F. (2005). Photocatalytic degradation of organic dyes in the presence of titatium dioxide under UV and solar light: effect of operational parameters. Environment Progress, 24, 317–322.
  • Baldrian, P., Merhautova´, V., Gabriel, J., Nerud, F., Stopka, P., Hruby, M., Benes, M.J. (2006). Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxide. Applied Catalysis B: Environmental, 66, 258-264.
  • Bamoharram, F.F., Heravi, M.M., Roushani, M., Toosi, M.R., Jodeyre, L. (2009). Synthesis and characterization of silica-supported preyssler nanoparticles and its catalytic activity for photodegradation of methyl orange. Green Chemistry Letters and Reviews, 2, 35–41.
  • Centi, G., Ciambelli, P., Perathoner, S., Russo, P. (2002). Environmental catalysis: trends and outlook. Catalysis Today, 75, 3–15.
  • Chen, D., Chen, J., Luan, X., Ji, H., Xia, Z. (2011). Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chemical Engineering Journal, 171, 1150–1158.
  • Demirci, S., Sahiner, N. (2014a). PEI-based ionic liquid colloids for versatine use: Biomedical and environmental applications. Journal of Molecular Liquids, 194, 85–92.
  • Demirci, S., Sahiner, N. (2014b). Superior reusability of metal catalysts prepared within poly(ethylene imine) microgels for H2 production from NaBH4 hydrolysis. Fuel Processing Technology, 127, 88–96.
  • Dempsey, E., Kennedy, A., Fay, N., McCormac, T. (2003). Investigations into heteropolyanions as electrocatalysts for the oxidation of adrenaline. Electroanalysis, 15, 1835–1842.
  • Fan, J., Guo, Y., Wang, J., Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166, 904–910.
  • Farzaneh, F., Majidian, M., Ghandi, M. (1999). The oxyfunctionalizations of cyclohexane catalyzed by Mn(II) complexes included in zeolite Y. Journal of Molecular Catalysis A: Chemistry, 148, 227–233.
  • Feng, J., Hu, X., Yue, P.L. (2004). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of orange II. Environmental Science and Technology, 38, 269–275.
  • Gemeay, A.H., Mansour, I.A., El Sharkawy, R.G., Zaki, A.B. (2003). Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine. Journal of Molecular Catalysis A: Chemical, 193, 109–120.
  • Guo, J., Al Dahhan, M. (2003). Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Industrial Engineering Chemical Research, 42, 2450–2460.
  • Idel-aouad, R., Valiente, M., Yacoubi, A., Tanouti, B., López-Mesas, M. (2011). Rapid decolourization and mineralization of the zo dye C.I. Acid red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745–750.
  • Jiang, R., Zhu, H., Yao, J., Fu, Y., Guan, Y. (2012). Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Applied Surface Science, 258, 3513–3518.
  • Jose, J., John, M., Gigimol, M.G., Mathew, B. (2003). Synthesis, characterization, and catalytic activity of crosslinked poly(N-vinyl-2-pyrollidone acrylc acid) copolymer-metal complexes. Journal of Apllied Polymer Science, 90, 895–904.
  • Keresztessy, Z., Bodnar, M., Ber, E., Hadju, I., Zhang, M., Hartmann, J.F., Minko, T., Borbely, J. (2009). Self-assembling chitosan/poly-γ-glutamic acid nanoparticles for targeted drug delivery. Colloid Polymer Science, 287, 759-765.
  • Kitamura, Y., Mifune, M., Takatsuki, T., Iwasaki, T., Kawamoto, M., Iwado, A., Chikuma, M., Saito, Y. (2008). Ion-exchange resins modified with metal-pprphyrin as a catalysis for oxidation of epinephrine (adrenaline). Catalysis Communication, 9, 224–228.
  • Lupanoa, L.V.L., Martínezb, J.M.L., Piehld, L.L., de Celis, E.R., Dall’ Orto, V.C. (2013). Activation of H2O2 and superoxide production using a novel cobalt complex based on a polyampholyte. Applied Catalysis A: General, 467, 342–354.
  • Maury, M.R., Saini, P., Haldar, C., Avecilla, F. (2012). Synthesis, characterization and catalytic activities of manganese(III) complexes of pyridoxal-based ONNO donor tetradenatate ligands. Polyhedron, 31, 710–720.
  • Mittal, A., Malviya, A., Kaur, D., Mittal, J., Kurup, L. (2007). Studieson the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from waste waters using waste materials. Journal of Hazardous Materials, 148, 229–240.
  • Nezamzadeh-Ejhieh, A., Moazzeni, N. (2013). Sunlight photodecolorization of a mixture of methyl orange and bromocresol green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. Journal of Industrial Engineering Chemistry, 19, 1433–1442.
  • Ni, J.A., Ju, H.X., Chen, H.Y., Leech, D. (1999). Amperometric determination of epinephrine with and osmium complex and Nafion double-layer membrane modified electrode. Analytical Chimica Acta, 378, 151–157.
  • Ozay, O., Akcali, A., Otkun, M.T., Silan, C., Aktas, N., Sahiner, N. (2010). P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids and Surfaces B: Biointerfaces, 79, 460–466.
  • Rafiquee, M.Z.A., Siddiqui, M.R., Ali, M.S., Al-Lohedan, H.A. (2014). Spectrophotometric investigation on the kinetics of oxidation of adrenaline by dioxygen of μ-dioxytetrakis(histidinato)-dicobalt(II) complex. Spectrochimica Acta Part A: Molecular ve Biomolecular Spectroscopy, 126, 21–27.
  • Sahiner, N. (2013). Preparation of poly(ethylene imine) particles for versatile applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433, 212–218.
  • Szigyártó, Cs., Szabó, L., Simándi, L.I. (2013). Kinetic studies on the manganese(II) complex catalyzed oxidation of epinephrine, Journal of Molecular Catalysis A: Chemical, 372, 66–71.
  • Taei, M., Jamshidi, M. (2014). Highly selective determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(Adizol Black B)-modified glassy carbon electrode. Journal of Sold State Electrochemistry, 18, 673–683.
  • Tang, W.Z., Chen, R.Z. (1996). Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere, 32, 947–958.
  • Tao, Z., Wang, G., Goodisman, J., Asefa, T. (2009). Accelerated oxidation of epinephrine by silica nanoparticles. Langmuir, 25, 10183–10188.
  • Victoria, L., Lupano, L., Martínez, J.M.L., Piehl, L.L., Celis, E.R., Sánchez, R.M.T., Orto, V.C.D. (2014). Synthesis, characterization, and catalytic properties of cationic hydrogels containing copper(II) and cobalt(II) ions. Langmuir, 30, 2903−2913.
  • Wang, S., Gong, Q., Liang, J. (2009). Sono photocatalytic degradation of methyl orange by carbon nanotube/TiO2 in aqueous solutions. Ultrasonic Sonochemistry, 16, 205–208.
  • Wu, R.C., Qu, J.H. (2004). Removal of azo dye from water by magnetite adsorption-fenton oxidation. Water Environment Research, 76, 2637–2642.
  • Xu, H.Y., Liu, W.C., Qi, S.Y., Li, Y., Zhao, Y., Li, J.W. (2014). Kinetics and optimization of the decolorization of dyeing wastewater by a schorl-catalyzed fenton-like reaction. Journal of Serbian Chemical Society, 79, 361–377.
  • Yuan, S., Li, Y., Zhang, Q., Wang, H. (2009). ZnO nanorods decorated calcined Mg-Al layered double hydroxides as photocatalysts with a high adsorptive capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 76–81.
  • Zaghouane-Boudiaf, H., Boutahala, M., Arab, L. (2012). Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chemical Engineering Journal, 187, 142–149.
There are 36 citations in total.

Details

Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Nurettin Şahiner

Şahin Demirci This is me

Massomeh Ghorbanloo This is me

Publication Date December 29, 2015
Published in Issue Year 2015 Volume: 1 Issue: 1

Cite

APA Şahiner, N., Demirci, Ş., & Ghorbanloo, M. (2015). Metil Oranj Bozunması ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) ve Co(II)] Hidrojel Katalizör. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(1), 1-26. https://doi.org/10.28979/comufbed.307878
AMA Şahiner N, Demirci Ş, Ghorbanloo M. Metil Oranj Bozunması ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) ve Co(II)] Hidrojel Katalizör. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. December 2015;1(1):1-26. doi:10.28979/comufbed.307878
Chicago Şahiner, Nurettin, Şahin Demirci, and Massomeh Ghorbanloo. “Metil Oranj Bozunması Ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) Ve Co(II)] Hidrojel Katalizör”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 1, no. 1 (December 2015): 1-26. https://doi.org/10.28979/comufbed.307878.
EndNote Şahiner N, Demirci Ş, Ghorbanloo M (December 1, 2015) Metil Oranj Bozunması ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) ve Co(II)] Hidrojel Katalizör. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 1 1 1–26.
IEEE N. Şahiner, Ş. Demirci, and M. Ghorbanloo, “Metil Oranj Bozunması ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) ve Co(II)] Hidrojel Katalizör”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 1, no. 1, pp. 1–26, 2015, doi: 10.28979/comufbed.307878.
ISNAD Şahiner, Nurettin et al. “Metil Oranj Bozunması Ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) Ve Co(II)] Hidrojel Katalizör”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 1/1 (December 2015), 1-26. https://doi.org/10.28979/comufbed.307878.
JAMA Şahiner N, Demirci Ş, Ghorbanloo M. Metil Oranj Bozunması ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) ve Co(II)] Hidrojel Katalizör. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2015;1:1–26.
MLA Şahiner, Nurettin et al. “Metil Oranj Bozunması Ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) Ve Co(II)] Hidrojel Katalizör”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 1, no. 1, 2015, pp. 1-26, doi:10.28979/comufbed.307878.
Vancouver Şahiner N, Demirci Ş, Ghorbanloo M. Metil Oranj Bozunması ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) ve Co(II)] Hidrojel Katalizör. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2015;1(1):1-26.

 14421         download