Araştırma Makalesi
BibTex RIS Kaynak Göster

Efficient Use of Carbon Fiber Reinforced Polymer for Reinforced Concrete Beams in Three-Point Bending

Yıl 2017, Cilt: 3 Sayı: 2, 1 - 16, 21.12.2017
https://doi.org/10.28979/comufbed.325678

Öz

Externally bonded fiber reinforced polymer (FRP) sheets are highly popular for reinforced concrete (RC) beams to improve their flexural performance. This paper presents the results of three-point bending tests on seven RC beams externally reinforced with carbon fiber reinforced polymers (CFRP) sheets. Two concrete mixes with different compressive strength values are prepared for the production of experimental beams (150x250x1500 mm). First four beams have been casted with concrete having mean compressive strengths of 25.7 MPa and the other three beams are made of concrete having a very low compressive strength of 6.8 MPa which fall within the expected range for RC buildings constructed before 1990s in Turkey. Three different strengthening schemes are used by bonding of FRP sheets 1) only to bottom surface of the beam; 2) to bottom surface and lateral side’s surfaces of 50 mm height including the tensile reinforcement and the concrete cover; and 3) in U-wrapping. Failure mechanisms and flexural behavior of the strengthened beams are evaluated on the basis of the effectiveness of different wrapping schemes. The results are compared with the recommendations of international code ACI 440.2R-08. The validity of perfect bond assumption of FRP-concrete interface and the tensile strain limits for FRP sheets are also examined.

Kaynakça

  • ACI 318-11, 2011. Building Code Requirements for Structural Concrete and Commentary. ACI Committee 318. ISBN: 9780870317446.
  • ACI 440.2R-08, 2008. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. ISBN: 9780870312854 (2008).
  • Aram M.R., Czaderski C., Motavalli M., 2008. Debonding Failure Modes of Flexural FRP-Strengthened RC Beams. Composites Part B: Engineering. 39(5), 826-841.
  • Badawi M., Soudki K., 2009. Flexural strengthening of RC beams with prestressed NSM CFRP rods – Experimental and analytical investigation. Construction and Building Materials. 23(10), 3292–3300.
  • Baggio D.F., 2013. Effect of FRP Anchors on the FRP Rehabilitation of Shear Critical RC Beams and Flexure Critical RC Slabs. Master of Applied Science Thesis University of Waterloo. Ontario Canada.
  • Baggio D., Soudki K., Noël M., 2014. Strengthening of shear critical RC beams with various FRP systems. Construction and Building Materials. 66, 634–644.
  • Barros J.A.O., Costa I.G., Ventura-Gouveia, A., 2011. CFRP Flexural and Shear Strengthening Technique for RC Beams: Experimental and Numerical Research. Advances in Structural Engineering. 14(3), 551-571.
  • Büyüköztürk O., Yu, T.Y., 2006. Understanding and Assessment of Debonding Failures in FRP-Concrete Systems. Seventh International Congress on Advances in Civil Engineering. October 11-13. Yıldız Technical University Istanbul Turkey.
  • Campione G., Mangiavillano M.L., 2008. Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations. Engineering Structures. 30(11), 2970–2980.
  • Fayyadh M.M., Razak H.A., 2014. Analytical and experimental study on repair effectiveness of CFRP sheets for RC beams. Journal of Civil Engineering and Management. 20(1), 21-31.
  • fib, 2001. The International Federation for Structural Concrete (Fédération internationale du béton). Externally bonded FRP reinforcement for RC structures. fib Bulletin 14.
  • Gunes O., 2004. A fracture-based approach to understanding debonding in FRP bonded structural members. PhD Thesis Department of Civil and Environmental Engineering. Massachusetts Institute of Technology. Cambridge MA.
  • ISIS, 2001. Strengthening reinforced concrete structures with externally bonded fiber reinforced polymers. The Canadian network of centers of excellence on intelligent sensing for innovative structures.
  • JSCE, 2001. Recommendations for upgrading of concrete structures with use of continuous fiber sheets, Japan.
  • Kim Y.J., 2014. Moment-Shear Interaction Mechanism for Carbon Fiber-Reinforced Polymer Strengthened Reinforced Concrete Beams in Flexure. ACI Structural Journal Technical Paper. 111(4), 967-975.
  • Li G., Zhang A., Guo Y., 2013. Debonding-Related Strain Limits for Externally Bonded FRP Sheets in Flexurally Strengthened Reinforced Concrete Beams. The Open Civil Engineering Journal. 7, 58-67.
  • Li G., Zhang A., Jin W., 2014. Effect of Shear Resistance on Flexural Debonding Load-Carrying Capacity of RC Beams Strengthened with Externally Bonded FRP Composites. Polymers 2014. 6(5), 1366-1380.
  • Mitolidis G.J., Salonikios T.N., Kappos A.J., 2012. Tests on RC Beams Strengthened at the Span with Externally Bonded Polymers Reinforced with Carbon or Steel Fibers. Journal of Composites for Construction. 16(5), 551-562.
  • Mostofinejad D., Kashani A.T., 2013. Experimental study on effect of EBR and EBROG methods on debonding of FRP sheets used for shear strengthening of RC beams. Composites Part B: Engineering. 45(1), 1704-1713.
  • Neagoe C.A., 2012. Experimental Study Regarding the Flexural Behavior of RC Beams Retrofitted with Unanchored CFRP Plates. Mathematical Modeling in Civil Engineering. 4, 149.
  • Nigro E., Di Ludovico, M., Bilotta, A., 2008. FRP-Concrete Debonding: Experimental Tests Under Cyclic Actions. The 14th World Conference on Earthquake Engineering. October 12-17. Beijing China.
  • SIA166, 2003. Klebebewehrungen (Externally bonded reinforcement). Schweizerischer Ingenieur und Architektenverein SIA.
  • Teng J.G., Chen J.F., 2007. Debonding Failures of RC Beams Strengthened with Externally Bonded FRP Reinforcement: Behavior and Modelling. Asia-Pasific Conference on FRP in Structures. 33-42.
  • TR55, 2004. Design guidance for strengthening concrete structures using fibre composite materials. Technical report no. 55 of the Concrete Society UK. 2nd edition.
  • TS500, 2000. Turkish Standard. Requirements for design and construction of reinforced concrete structures.
  • Ye L.P., Lu X.Z., Chen J.F., 2005. Design Proposals for the Debonding Strengths of FRP Strengthened RC Beams in the Chinese Design Code. Proceedings of International Symposium on Bond Behavior of FRP in Structures. December 7-9. Hong Kong China.

Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin ve Ekonomik Kullanımı

Yıl 2017, Cilt: 3 Sayı: 2, 1 - 16, 21.12.2017
https://doi.org/10.28979/comufbed.325678

Öz

Lifli polimer kumaşlar betonarme kirişlerin eğilme performanslarını iyileştirmek için oldukça yaygın olarak kullanılmaktadır. Bu çalışma, karbon lifli polimer ile dıştan sargılanmış 7 adet betonarme kiriş üzerinde yapılan üç noktalı eğilme deneyi sonuçlarını içermektedir. 150x250x1500 mm boyutlarındaki deneysel kirişlerin üretilmesi için farklı basınç dayanımı değerine sahip iki adet beton karışımı hazırlanmıştır. İlk gruptaki 4 adet kiriş, ortalama basınç day animi değeri 25,7 MPa olan beton karışımı ile hazırlanırken, diğer gruptaki 3 adet kiriş ise, ülkemizde 1990lı yıllardan önce yapılan betonarme binalarda görülmesi beklenen düşük basınç dayanımını yansıtması amacıyla 6,8 MPa değerindeki beton karışımı ile hazırlanmıştır. Betonarme kirişlerin lifli polimer kumaşlar ile güçlendirilmesinde 3 farklı yöntem kullanılmıştır: 1) Yalnızca kirişin alt yüzeyi; 2) Kirişin alt yüzeyi ile birlikte pas payını ve çekme donatılarını içine alan 50 mm yüksekliğinde yan yüzeyleri; ve 3) U şeklinde sargılama. Deneyler sonucunda güçlendirilmiş kirişlerin göçme mekanizmaları ve eğilme davranışları, farklı güçlendirme yöntemlerinin etkileri göz önüne alınarak değerlendirilmiştir. Sonuçlar ACI 440.2R-08 Amerikan Beton Enstitüsünün Lifli Polimer Sistemleri ile Güçlendirme yönetmeliğindeki öneriler ile karşılaştırılmıştır. Lifli polimer malzeme ile beton arasındaki aderansın kusursuz olduğu varsayımının geçerliliği ile lifli polimer kumaşların çekme birim şekil değiştirme sınırları da bu çalışmada incelenmiştir.

Kaynakça

  • ACI 318-11, 2011. Building Code Requirements for Structural Concrete and Commentary. ACI Committee 318. ISBN: 9780870317446.
  • ACI 440.2R-08, 2008. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. ISBN: 9780870312854 (2008).
  • Aram M.R., Czaderski C., Motavalli M., 2008. Debonding Failure Modes of Flexural FRP-Strengthened RC Beams. Composites Part B: Engineering. 39(5), 826-841.
  • Badawi M., Soudki K., 2009. Flexural strengthening of RC beams with prestressed NSM CFRP rods – Experimental and analytical investigation. Construction and Building Materials. 23(10), 3292–3300.
  • Baggio D.F., 2013. Effect of FRP Anchors on the FRP Rehabilitation of Shear Critical RC Beams and Flexure Critical RC Slabs. Master of Applied Science Thesis University of Waterloo. Ontario Canada.
  • Baggio D., Soudki K., Noël M., 2014. Strengthening of shear critical RC beams with various FRP systems. Construction and Building Materials. 66, 634–644.
  • Barros J.A.O., Costa I.G., Ventura-Gouveia, A., 2011. CFRP Flexural and Shear Strengthening Technique for RC Beams: Experimental and Numerical Research. Advances in Structural Engineering. 14(3), 551-571.
  • Büyüköztürk O., Yu, T.Y., 2006. Understanding and Assessment of Debonding Failures in FRP-Concrete Systems. Seventh International Congress on Advances in Civil Engineering. October 11-13. Yıldız Technical University Istanbul Turkey.
  • Campione G., Mangiavillano M.L., 2008. Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations. Engineering Structures. 30(11), 2970–2980.
  • Fayyadh M.M., Razak H.A., 2014. Analytical and experimental study on repair effectiveness of CFRP sheets for RC beams. Journal of Civil Engineering and Management. 20(1), 21-31.
  • fib, 2001. The International Federation for Structural Concrete (Fédération internationale du béton). Externally bonded FRP reinforcement for RC structures. fib Bulletin 14.
  • Gunes O., 2004. A fracture-based approach to understanding debonding in FRP bonded structural members. PhD Thesis Department of Civil and Environmental Engineering. Massachusetts Institute of Technology. Cambridge MA.
  • ISIS, 2001. Strengthening reinforced concrete structures with externally bonded fiber reinforced polymers. The Canadian network of centers of excellence on intelligent sensing for innovative structures.
  • JSCE, 2001. Recommendations for upgrading of concrete structures with use of continuous fiber sheets, Japan.
  • Kim Y.J., 2014. Moment-Shear Interaction Mechanism for Carbon Fiber-Reinforced Polymer Strengthened Reinforced Concrete Beams in Flexure. ACI Structural Journal Technical Paper. 111(4), 967-975.
  • Li G., Zhang A., Guo Y., 2013. Debonding-Related Strain Limits for Externally Bonded FRP Sheets in Flexurally Strengthened Reinforced Concrete Beams. The Open Civil Engineering Journal. 7, 58-67.
  • Li G., Zhang A., Jin W., 2014. Effect of Shear Resistance on Flexural Debonding Load-Carrying Capacity of RC Beams Strengthened with Externally Bonded FRP Composites. Polymers 2014. 6(5), 1366-1380.
  • Mitolidis G.J., Salonikios T.N., Kappos A.J., 2012. Tests on RC Beams Strengthened at the Span with Externally Bonded Polymers Reinforced with Carbon or Steel Fibers. Journal of Composites for Construction. 16(5), 551-562.
  • Mostofinejad D., Kashani A.T., 2013. Experimental study on effect of EBR and EBROG methods on debonding of FRP sheets used for shear strengthening of RC beams. Composites Part B: Engineering. 45(1), 1704-1713.
  • Neagoe C.A., 2012. Experimental Study Regarding the Flexural Behavior of RC Beams Retrofitted with Unanchored CFRP Plates. Mathematical Modeling in Civil Engineering. 4, 149.
  • Nigro E., Di Ludovico, M., Bilotta, A., 2008. FRP-Concrete Debonding: Experimental Tests Under Cyclic Actions. The 14th World Conference on Earthquake Engineering. October 12-17. Beijing China.
  • SIA166, 2003. Klebebewehrungen (Externally bonded reinforcement). Schweizerischer Ingenieur und Architektenverein SIA.
  • Teng J.G., Chen J.F., 2007. Debonding Failures of RC Beams Strengthened with Externally Bonded FRP Reinforcement: Behavior and Modelling. Asia-Pasific Conference on FRP in Structures. 33-42.
  • TR55, 2004. Design guidance for strengthening concrete structures using fibre composite materials. Technical report no. 55 of the Concrete Society UK. 2nd edition.
  • TS500, 2000. Turkish Standard. Requirements for design and construction of reinforced concrete structures.
  • Ye L.P., Lu X.Z., Chen J.F., 2005. Design Proposals for the Debonding Strengths of FRP Strengthened RC Beams in the Chinese Design Code. Proceedings of International Symposium on Bond Behavior of FRP in Structures. December 7-9. Hong Kong China.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

H. Orhun Köksal

Ferruh Altınsoy

Selen Aktan

Şebnem Karahan

Rahman Çankaya Bu kişi benim

Yayımlanma Tarihi 21 Aralık 2017
Kabul Tarihi 24 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 3 Sayı: 2

Kaynak Göster

APA Köksal, H. O., Altınsoy, F., Aktan, S., Karahan, Ş., vd. (2017). Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin ve Ekonomik Kullanımı. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 1-16. https://doi.org/10.28979/comufbed.325678
AMA Köksal HO, Altınsoy F, Aktan S, Karahan Ş, Çankaya R. Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin ve Ekonomik Kullanımı. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Aralık 2017;3(2):1-16. doi:10.28979/comufbed.325678
Chicago Köksal, H. Orhun, Ferruh Altınsoy, Selen Aktan, Şebnem Karahan, ve Rahman Çankaya. “Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin Ve Ekonomik Kullanımı”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3, sy. 2 (Aralık 2017): 1-16. https://doi.org/10.28979/comufbed.325678.
EndNote Köksal HO, Altınsoy F, Aktan S, Karahan Ş, Çankaya R (01 Aralık 2017) Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin ve Ekonomik Kullanımı. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3 2 1–16.
IEEE H. O. Köksal, F. Altınsoy, S. Aktan, Ş. Karahan, ve R. Çankaya, “Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin ve Ekonomik Kullanımı”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 3, sy. 2, ss. 1–16, 2017, doi: 10.28979/comufbed.325678.
ISNAD Köksal, H. Orhun vd. “Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin Ve Ekonomik Kullanımı”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3/2 (Aralık 2017), 1-16. https://doi.org/10.28979/comufbed.325678.
JAMA Köksal HO, Altınsoy F, Aktan S, Karahan Ş, Çankaya R. Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin ve Ekonomik Kullanımı. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017;3:1–16.
MLA Köksal, H. Orhun vd. “Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin Ve Ekonomik Kullanımı”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 3, sy. 2, 2017, ss. 1-16, doi:10.28979/comufbed.325678.
Vancouver Köksal HO, Altınsoy F, Aktan S, Karahan Ş, Çankaya R. Üç Noktalı Eğilme Altındaki Betonarme Kirişlerde Karbon Lifli Polimerin Etkin ve Ekonomik Kullanımı. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017;3(2):1-16.

 14421         download