Research Article
BibTex RIS Cite

MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks

Year 2019, Volume: 5 Issue: 2, 214 - 232, 19.12.2019
https://doi.org/10.28979/comufbed.597093

Abstract

The amount of data in World Wide Web is growing exponentially. Users are
often lost in this vast ocean of data. In order to filter the valuable
information from vast amount of data, recommendation systems are used. These
systems are based on collaborative filtering, content based filtering and
hybrid approaches. We combined collaborative and content-based filtering to
build a hybrid movie recommendation system, MovieANN, based on neural network
model. To make better recommendations in a collaborative approach, both user
and movie clusters are formed. In addition to rating information, content
information was also considered in the formation of the clusters. Clusters are
formed according to K-Means and X-Means algorithms. Final clusters are chosen
according to Davies-Bouldin Index and intra cluster distance. Homogeneity and
density of the clusters are also considered. Movie and user clusters are mapped
in the recommendation phase. The model is tested on a MoiveLens 1M dataset that
consists of six thousand users, four thousand movies and one million ratings.
Four clusters are formed to represent movie – user mappings and for each
cluster, a recommendation model based on multi-layer neural network is
constructed. The recommendation performance in terms of accuracy is 84.52%,
84.54% in terms of precision and 99.98% in terms of recall.

References

  • Attarde D.V., Singh M., 2017. Survey on Recommendation System Using Data Mining and Clustering Techniques. International Journal for Research in Engineering Application and Management (IJREAM), 3(9). ISSN : 2454-9150.
  • Bobadilla J., Ortega F., Hernando A., Gutiérrez A., 2013. Recommender Systems Survey. Knowledge-Based Systems, 46: 109–132.
  • Burke R., 2002. Hybrid recommender systems: Survey and experiments. User Model User Adapt Interact, 12: 331–370.
  • Cami B. R., Hassanpour H., Mashayekhi H., 2017. A Content-Based Movie Recommender System Based on Temporal User Preferences. Third Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS). DOI: 10.1109/ICSPIS.2017.8311601.
  • Campos L.M, Fernández-Luna J.M., Huete J.F., Rueda-Morales M.A., 2010. Combining Content-Based and Collaborative Recommendations: A Hybrid Approach Based on Bayesian Networks. International Journal of Approximate Reasoning, 51: 785–799.
  • Chen R., Hua Q., Chang Y.S., Wang B., Zhang L., Kong X.A, 2018. Survey of Collaborative Filtering-Based Recommender Systems: From Traditional Methods to Hybrid Methods Based On Social Networks. IEE Access. DOI: 10.1109/ACCESS.2018.2877208.
  • Christakou C., Stafylopatis A., 2005. Hybrid Movie Recommender System Based on Neural Networks. Proceedings of the 5th International Conference on Intelligent Systems Design and Applications (ISDA’05). DOI: 10.1109/ISDA.2005.9.
  • David D.L., Bouldin D.W., 1979. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-1(2): 224–227. DOI:10.1109/TPAMI.1979.4766909
  • Draisma J., Horobeţ E., Ottaviani G., Sturmfels B., Thomas R., 2014. The Euclidean Distance Degree. arXiv:1309.0049.
  • Gupta U., Patil N., 2015. Recommender System Based On Hierarchical Clustering Algorithm Chameleon. IEEE International Advance Computing Conference (IACC). DOI: 10.1109/IADCC.2015.7154856.
  • Harper M.F., Konstan J.A., 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4).
  • Haruna K., Ismail M. A., Damiasih D., Sutopo J., 2017. A Collaborative Approach for Research Paper. PloS One, 12(10): 1-17.
  • Karimi, M., Jannach, D. & Jugovac, M.(2018). News recommender systems – Survey and roads ahead Information Processing & Management, 54(6): 1203-1227.
  • Koohi H., Kiani K., 2017. A New Method To Find Neighbor Users That Improves The Performance Of Collaborative Filtering. Expert Systems with Applications: An International Journal, 83(C): 30-39.
  • Kumar M., Yadav D.K., Singh A., Gupta V.K., 2015. A Movie Recommender System: MOVREC. International Journal of Computer Applications, 124(3).
  • Lekakos G., Caravelas, P., 2008. A Hybrid Approach for Movie Recommendation. Multimed Tools Appl, 36: 55–70.
  • Levandowsky M., David W., 1971. Distance Between Sets. Nature, 234(5): 34–35.
  • Mahadevan A., Arock M., 2016. A Study and Analysis of Collaborative Filtering Algorithms for Recommender Systems. International Journal of Circuit Theory and Applications, 9(27): 127-136.
  • Mierswa I., Klinkenberg R., 2019. Rapidminer Studio 9.1: Data Science, Machine Learning, Predictive Analytics.
  • Pazzani M.J., 1999. A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review, 13: 393–408.
  • Pazzani M.J., Billsus D., 2007. Content-Based Recommendation Systems. In: Brusilovsky P., Kobsa A., Nejdl W. Eds. The Adaptive Web. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. 4321.
  • Pearson K., 1895. Notes on Regression and Inheritance in the Case of Two Parents. Proceedings of the Royal Society of London, 58: 240–242.
  • Pelleg D., Moore A., 2000. X-Means: Extending K-Means with Efficient Estimation of The Number Of Clusters. In Proceedings of the 17th International Conf. on Machine Learning, 727 – 734.
  • Portugal I., Alencar P., Cowan D., 2018. The Use of Machine Learning Algorithms in Recommender Systems: A Systematic Review. Expert Systems with Applications, 97: 205 – 227.
  • Resnick P., Iacovou N., Suchak M., Bergstrom P., Riedl J., 1994. Grouplens: An Open Architecture for Collaborative Filtering Of Netnews. In Proceedings of ACM Conference on Computer Supported Cooperative Work. DOI: 10.1145/192844.192905.
  • Rombouts J., Verhoef T., (Date of access: July 2019). A Simple Hybrid Movie Recommender System. http://www.fon.hum.uva.nl/tessa/Verhoef/Past_projects_files/Eind_Rombouts_Verhoef.pdf.
  • Salton G., Wong A., Yang C.S., 1975. A Vector Space Model for Automatic Indexing. Communications of the ACM, 18(11).
  • Sridevi M., Rao R.R., Rao M.V., 2016. A survey on recommender system. International Journal of Computer Science and Information mSecurity (IJCSIS), 14(5).
  • Schwarz G.E., 1978. Estimating the Dimension of a Model. Annals of Statistics, 6(2): 461–464.
  • Tüysüzoğlu G., Işık Z., 2018. Hybrid Movie Recommendation System Using Graph-Based Approach. International Journal of Computing Academic Research (IJCAR), 7(2): 29-37.
  • Virk H.K., Singh M., Singh A., 2015. Analysis and Design of Hybrid Online Movie Recommender System. IJIET 5(2).
  • Vít N., 2018. Implementation Notes for The Soft Cosine Measure. In Proceedings The 27th ACM International Conference On Information And Knowledge Management, 1639–1642.
  • Xiao T., Shen H., 2019. Neural Variational Matrix Factorization with Side Information for Collaborative Filtering. In: Yang Q., Zhou Z.H., Gong Z., Zhang M.L., Huang S.J., Eds. Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science. Springer, Cham.
  • Zahra S., Ghazanfar M.A., Khalid A., Azam M.A., Naeem U., Bennett A.P., 2015. Novel Centroid Selection Approaches for K-Means Clustering Based Recommender Systems. Information Sciences, 320(1): 156-189.

MovieANN: Film Öneri Sistemlerine Çok Katmanlı Yapay Sinir Ağı Kullanarak Karma Bir Yaklaşım

Year 2019, Volume: 5 Issue: 2, 214 - 232, 19.12.2019
https://doi.org/10.28979/comufbed.597093

Abstract

İnternetteki veri miktarı gün geçtikçe katlanarak artmaktadır. Kullanıcılar
bu geniş veri okyanusunda sıklıkla kaybolmaktadır. Bu yüksek miktardaki ham
veriden önemli bilgiyi filtrelemek için öneri sistemleri kullanılır. Bu
sistemler işbirlikçi filtrelemeye, içeriğe dayalı filtrelemeye ve hibrit
yaklaşımlara dayanmaktadır. Bu çalışmada yapay sinir ağına dayalı hibrit bir
film öneri sistemi olan MovieANN, işbirlikçi ve içerik tabanlı filtreleme
kullanılarak gerçekleştirilmiştir. İşbirlikçi bir yaklaşımla daha iyi öneriler
yapmak için hem kullanıcı hem de film kümeleri oluşturulmuştur. Kümeler
oluşturulurken rating bilgisine ek olarak içerik bilgisi de dikkate alınmıştır.
Kümeleme için K-Means ve X-Means algoritmaları kullanılmıştır.  Son kümeler, Davies-Bouldin Endeksi ve küme
içi mesafelerine göre seçilir. Kümeler oluşturulurken homojenlik ve yoğunluk da
göz önünde bulundurulmuştur. Öneri adımında film ve kullanıcı kümeleri
eşleştirilir. İlgili model, altı bin kullanıcı, dört bin film ve bir milyon
ratingden oluşan MoiveLens 1M veri kümesinde test edilmiştir. Film kullanıcı
eşlemelerini temsil etmek için dört küme ve her küme için çok katmanlı sinir
ağını temel alan bir öneri modeli oluşturulmuştur. Modelin öneri performansı
doğruluk olarak % 84,52, kesinlik açısından % 84,54 ve geri çağırmada %
99,98'dir.

References

  • Attarde D.V., Singh M., 2017. Survey on Recommendation System Using Data Mining and Clustering Techniques. International Journal for Research in Engineering Application and Management (IJREAM), 3(9). ISSN : 2454-9150.
  • Bobadilla J., Ortega F., Hernando A., Gutiérrez A., 2013. Recommender Systems Survey. Knowledge-Based Systems, 46: 109–132.
  • Burke R., 2002. Hybrid recommender systems: Survey and experiments. User Model User Adapt Interact, 12: 331–370.
  • Cami B. R., Hassanpour H., Mashayekhi H., 2017. A Content-Based Movie Recommender System Based on Temporal User Preferences. Third Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS). DOI: 10.1109/ICSPIS.2017.8311601.
  • Campos L.M, Fernández-Luna J.M., Huete J.F., Rueda-Morales M.A., 2010. Combining Content-Based and Collaborative Recommendations: A Hybrid Approach Based on Bayesian Networks. International Journal of Approximate Reasoning, 51: 785–799.
  • Chen R., Hua Q., Chang Y.S., Wang B., Zhang L., Kong X.A, 2018. Survey of Collaborative Filtering-Based Recommender Systems: From Traditional Methods to Hybrid Methods Based On Social Networks. IEE Access. DOI: 10.1109/ACCESS.2018.2877208.
  • Christakou C., Stafylopatis A., 2005. Hybrid Movie Recommender System Based on Neural Networks. Proceedings of the 5th International Conference on Intelligent Systems Design and Applications (ISDA’05). DOI: 10.1109/ISDA.2005.9.
  • David D.L., Bouldin D.W., 1979. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-1(2): 224–227. DOI:10.1109/TPAMI.1979.4766909
  • Draisma J., Horobeţ E., Ottaviani G., Sturmfels B., Thomas R., 2014. The Euclidean Distance Degree. arXiv:1309.0049.
  • Gupta U., Patil N., 2015. Recommender System Based On Hierarchical Clustering Algorithm Chameleon. IEEE International Advance Computing Conference (IACC). DOI: 10.1109/IADCC.2015.7154856.
  • Harper M.F., Konstan J.A., 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4).
  • Haruna K., Ismail M. A., Damiasih D., Sutopo J., 2017. A Collaborative Approach for Research Paper. PloS One, 12(10): 1-17.
  • Karimi, M., Jannach, D. & Jugovac, M.(2018). News recommender systems – Survey and roads ahead Information Processing & Management, 54(6): 1203-1227.
  • Koohi H., Kiani K., 2017. A New Method To Find Neighbor Users That Improves The Performance Of Collaborative Filtering. Expert Systems with Applications: An International Journal, 83(C): 30-39.
  • Kumar M., Yadav D.K., Singh A., Gupta V.K., 2015. A Movie Recommender System: MOVREC. International Journal of Computer Applications, 124(3).
  • Lekakos G., Caravelas, P., 2008. A Hybrid Approach for Movie Recommendation. Multimed Tools Appl, 36: 55–70.
  • Levandowsky M., David W., 1971. Distance Between Sets. Nature, 234(5): 34–35.
  • Mahadevan A., Arock M., 2016. A Study and Analysis of Collaborative Filtering Algorithms for Recommender Systems. International Journal of Circuit Theory and Applications, 9(27): 127-136.
  • Mierswa I., Klinkenberg R., 2019. Rapidminer Studio 9.1: Data Science, Machine Learning, Predictive Analytics.
  • Pazzani M.J., 1999. A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review, 13: 393–408.
  • Pazzani M.J., Billsus D., 2007. Content-Based Recommendation Systems. In: Brusilovsky P., Kobsa A., Nejdl W. Eds. The Adaptive Web. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. 4321.
  • Pearson K., 1895. Notes on Regression and Inheritance in the Case of Two Parents. Proceedings of the Royal Society of London, 58: 240–242.
  • Pelleg D., Moore A., 2000. X-Means: Extending K-Means with Efficient Estimation of The Number Of Clusters. In Proceedings of the 17th International Conf. on Machine Learning, 727 – 734.
  • Portugal I., Alencar P., Cowan D., 2018. The Use of Machine Learning Algorithms in Recommender Systems: A Systematic Review. Expert Systems with Applications, 97: 205 – 227.
  • Resnick P., Iacovou N., Suchak M., Bergstrom P., Riedl J., 1994. Grouplens: An Open Architecture for Collaborative Filtering Of Netnews. In Proceedings of ACM Conference on Computer Supported Cooperative Work. DOI: 10.1145/192844.192905.
  • Rombouts J., Verhoef T., (Date of access: July 2019). A Simple Hybrid Movie Recommender System. http://www.fon.hum.uva.nl/tessa/Verhoef/Past_projects_files/Eind_Rombouts_Verhoef.pdf.
  • Salton G., Wong A., Yang C.S., 1975. A Vector Space Model for Automatic Indexing. Communications of the ACM, 18(11).
  • Sridevi M., Rao R.R., Rao M.V., 2016. A survey on recommender system. International Journal of Computer Science and Information mSecurity (IJCSIS), 14(5).
  • Schwarz G.E., 1978. Estimating the Dimension of a Model. Annals of Statistics, 6(2): 461–464.
  • Tüysüzoğlu G., Işık Z., 2018. Hybrid Movie Recommendation System Using Graph-Based Approach. International Journal of Computing Academic Research (IJCAR), 7(2): 29-37.
  • Virk H.K., Singh M., Singh A., 2015. Analysis and Design of Hybrid Online Movie Recommender System. IJIET 5(2).
  • Vít N., 2018. Implementation Notes for The Soft Cosine Measure. In Proceedings The 27th ACM International Conference On Information And Knowledge Management, 1639–1642.
  • Xiao T., Shen H., 2019. Neural Variational Matrix Factorization with Side Information for Collaborative Filtering. In: Yang Q., Zhou Z.H., Gong Z., Zhang M.L., Huang S.J., Eds. Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science. Springer, Cham.
  • Zahra S., Ghazanfar M.A., Khalid A., Azam M.A., Naeem U., Bennett A.P., 2015. Novel Centroid Selection Approaches for K-Means Clustering Based Recommender Systems. Information Sciences, 320(1): 156-189.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Sait Can Yücebaş 0000-0002-1030-3545

Publication Date December 19, 2019
Acceptance Date December 12, 2019
Published in Issue Year 2019 Volume: 5 Issue: 2

Cite

APA Yücebaş, S. C. (2019). MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 214-232. https://doi.org/10.28979/comufbed.597093
AMA Yücebaş SC. MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. December 2019;5(2):214-232. doi:10.28979/comufbed.597093
Chicago Yücebaş, Sait Can. “MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 2 (December 2019): 214-32. https://doi.org/10.28979/comufbed.597093.
EndNote Yücebaş SC (December 1, 2019) MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 214–232.
IEEE S. C. Yücebaş, “MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, pp. 214–232, 2019, doi: 10.28979/comufbed.597093.
ISNAD Yücebaş, Sait Can. “MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (December 2019), 214-232. https://doi.org/10.28979/comufbed.597093.
JAMA Yücebaş SC. MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019;5:214–232.
MLA Yücebaş, Sait Can. “MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, 2019, pp. 214-32, doi:10.28979/comufbed.597093.
Vancouver Yücebaş SC. MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019;5(2):214-32.

 14421         download