Research Article
BibTex RIS Cite

Endoplazmik retikulum stres belirteçlerinden ATF5 ve fosforile eIF2α düzeylerinin nöroblastoma hücrelerinde kainik asit muamelesi sonrası incelenmesi

Year 2020, Volume: 45 Issue: 1, 96 - 101, 31.03.2020
https://doi.org/10.17826/cumj.637075

Abstract

Amaç: Bu çalışmada, amacımız, kainik asite bağlı eksitotoksisite ve endoplazmik retikulum (ER) stres arasındaki ilişkiyi iki majör endoplazmik retikulum stres markırı olan ATF5 ve fosforile olmuş eIF2a analiz ederek incelemektir.
Gereç ve Yöntem: Neuroblastoma hücrelerini 1 mM kainik asit ile 24 saat muamele ettik. ATP ölçümü, kainik asit muamelesi yapılan hücrelerde ya da kontrol hücrelerinde bioluminesans bir yöntem ile yapılmıştır. Total protein, kainik asit muamelesi yapılmış ya da kontrol hücrelerinden izole edilmiş ve ATF5 ve fosforile olmuş eIF2 markırları western blot ile incelenmiştir.
Bulgular: Kainik asit ile muamele edilmiş neuroblastoma hücrelerinde ATF5 ve fosforile olmuş eIF2a seviyelerinin kontrole göre değişmediğini ilk kez gösterdik. Kainik asit ile muamele edilmiş hücrelerde ATP seviyesinin düştüğünü gösterdik.
Sonuç: 1 mM ve 24 saat süren kainik asit muamelesi, ATF5 ve fosforile olmuş eIF2 ile gösterilebilecek endoplazmik retikulum stresi yaratmak için yeterli olmayabilir. Süre ve konsantrasyon olarak arttırılmış kainik asit muamelesi ya da farklı markırlar gerekmektedir. Eksitotoksisiteye bağlı beyin hastalıklarında ER stres yolaklarını araştırmak, yeni tedavi yolları bulmak ve birden fazla hastalığı aynı anda engellemek adına önemli olacaktır.

Supporting Institution

Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri

Project Number

TPF-17060

References

  • 1. Oakes SA, Papa FR. The Role of Endoplasmic Reticulum Stress in Human Pathology. Annual Review of Pathology: Mechanisms of Disease 2015;10:173-194
  • 2. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology 2012;13:89-102
  • 3. Adams CJ, Kopp MC, Larburu N, Nowak PR and Ali MMU. Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Front. Mol. Biosci. 2019;6:11
  • 4. Liu CY, Kaufman RJ. The unfolded protein response. Journal of Cell Science 2003; 116:1861-1862
  • 5. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Reports 2016;17:1374–1395
  • 6. Torres-Peraza JF, Engel T, Martı ́n-Iba ́n ̃ez R, Sanz-Rodrı ́guez A, Ferna ́ndez-Ferna ́ndez MR, Esgleas M, Canals JM,. Henshall DC , Lucas JJ. Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus. Brain 2013;136:1161-1176
  • 7. Dong X, Wang Y, and Qin Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009; 30(4):379-387.
  • 8. Zhou Y and Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm. 2014;121(8):799-817.
  • 9. Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology. 2019; pii: S0028-3908(19)30070-X.
  • 10. Karaca M, Frigerio F, Maechler P. From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis. Neurochem Int. 2011;59(4):510-7
  • 11. Danbolt NC. Glutamate uptake. Prog. Neurobiol. 2001;65:1-105.
  • 12. Lin CLG, Kong Q, Cuny GD, and Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem. 2012;4(13):1689-1700
  • 13. Mohd Sairazi NS, Sirajudeen KNS, Asari MA, Muzaimi M, Mummedy S, Sulaiman SA. (2015) Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts. Evid Based Complement Alternat Med. 2015;2015:972623
  • 14. Verdaguer E, Garcia-Jorda E, Jimenez A, Stranges A, Sureda FX, Canudas AM, Escubedo E, Camarasa J, Pallas M, Camins A. Kainic acid-induced neuronal cell death in cerebellar granule cells is not prevented by caspase inhibitors. British Journal of Pharmacology. 2002;135:1297-1307
  • 15. Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L, Belluardo N, Lindholm D, Korhonen L. Endoplasmic Reticulum Stress Inhibition Protects against Excitotoxic Neuronal Injury in the Rat Brain. The Journal of Neuroscience, 2007;27(4):901–908
  • 16. Xue F, Shi C, Chen Q, Hang W, Xia L, Wu Y, Tao SZ, Zhou J, Shi A, Chen J. Melatonin Mediates Protective Effects against Kainic Acid-Induced Neuronal Death through Safeguarding ER Stress and Mitochondrial Disturbance. Front. Mol. Neurosci. 2017;10:49
  • 17. Kim JS, Heo RW, Kim H, Yi CO, Shin HJ, Han JW, Roh GS. Salubrinal, ER stress inhibitor, attenuates kainic acid-induced hippocampal cell death. J Neural Transm 2014;121:1233.
  • 18. Zhang XM, Zhu J. Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines. Curr Neuropharmacol. 2011;9(2):388–398.

The investigation of endoplasmic reticulum stress markers ATF5 and phosphorylated eIF2α after kainic acid treatment in neuroblastoma cells

Year 2020, Volume: 45 Issue: 1, 96 - 101, 31.03.2020
https://doi.org/10.17826/cumj.637075

Abstract

Purpose: The aim of this study was to investigate the relationship between kainic acid induced excitotoxicity and endoplasmic resticulum (ER) stress by analyzing two major ER stress markers such as ATF5 and phosphorylated eIF2 in neuroblastoma cells.
Materials and Methods: Neuroblastoma cells were treated with 1 mM kainic acid for 24 hours. ATP measurement was performed in kainic acid-treated and vehicle-treated neuroblastoma cells via ATP bioluminescence assay. Total protein was isolated from kainic acid-treated and control cells. Via western blotting, the expression levels of ATF5 and phosphorylated eIF2α were analyzed.
Results: We showed for the first time that as a result of kainic acid treatment in neuroblastoma cells, the protein expression levels of ER stress markers ATF5 and phosphorylated eIF2 did not display any change when compared to control cells. We also showed that ATP levels were decreased in kainic acid-treated cells.
Conclusion: This study may show that the level of stress that kainic acid causes at 1 mM for 24 hours in neuroblastoma cells was not adequate to lead to ER stress which is measurable by ATF5 and phosphorylated eIF2. Either an increased level of treatment of kainic acid via increased duration or concentration is necessary or different markers should be tried. The investigation of the ER stress pathways in the excitotoxicity-related brain diseases will pave the way for new therapies based on ER stress and combat more than one disease simultaneously.

Project Number

TPF-17060

References

  • 1. Oakes SA, Papa FR. The Role of Endoplasmic Reticulum Stress in Human Pathology. Annual Review of Pathology: Mechanisms of Disease 2015;10:173-194
  • 2. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology 2012;13:89-102
  • 3. Adams CJ, Kopp MC, Larburu N, Nowak PR and Ali MMU. Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Front. Mol. Biosci. 2019;6:11
  • 4. Liu CY, Kaufman RJ. The unfolded protein response. Journal of Cell Science 2003; 116:1861-1862
  • 5. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Reports 2016;17:1374–1395
  • 6. Torres-Peraza JF, Engel T, Martı ́n-Iba ́n ̃ez R, Sanz-Rodrı ́guez A, Ferna ́ndez-Ferna ́ndez MR, Esgleas M, Canals JM,. Henshall DC , Lucas JJ. Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus. Brain 2013;136:1161-1176
  • 7. Dong X, Wang Y, and Qin Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009; 30(4):379-387.
  • 8. Zhou Y and Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm. 2014;121(8):799-817.
  • 9. Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology. 2019; pii: S0028-3908(19)30070-X.
  • 10. Karaca M, Frigerio F, Maechler P. From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis. Neurochem Int. 2011;59(4):510-7
  • 11. Danbolt NC. Glutamate uptake. Prog. Neurobiol. 2001;65:1-105.
  • 12. Lin CLG, Kong Q, Cuny GD, and Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem. 2012;4(13):1689-1700
  • 13. Mohd Sairazi NS, Sirajudeen KNS, Asari MA, Muzaimi M, Mummedy S, Sulaiman SA. (2015) Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts. Evid Based Complement Alternat Med. 2015;2015:972623
  • 14. Verdaguer E, Garcia-Jorda E, Jimenez A, Stranges A, Sureda FX, Canudas AM, Escubedo E, Camarasa J, Pallas M, Camins A. Kainic acid-induced neuronal cell death in cerebellar granule cells is not prevented by caspase inhibitors. British Journal of Pharmacology. 2002;135:1297-1307
  • 15. Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L, Belluardo N, Lindholm D, Korhonen L. Endoplasmic Reticulum Stress Inhibition Protects against Excitotoxic Neuronal Injury in the Rat Brain. The Journal of Neuroscience, 2007;27(4):901–908
  • 16. Xue F, Shi C, Chen Q, Hang W, Xia L, Wu Y, Tao SZ, Zhou J, Shi A, Chen J. Melatonin Mediates Protective Effects against Kainic Acid-Induced Neuronal Death through Safeguarding ER Stress and Mitochondrial Disturbance. Front. Mol. Neurosci. 2017;10:49
  • 17. Kim JS, Heo RW, Kim H, Yi CO, Shin HJ, Han JW, Roh GS. Salubrinal, ER stress inhibitor, attenuates kainic acid-induced hippocampal cell death. J Neural Transm 2014;121:1233.
  • 18. Zhang XM, Zhu J. Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines. Curr Neuropharmacol. 2011;9(2):388–398.
There are 18 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research
Authors

Alime Sarı This is me 0000-0001-5595-6630

Gizem Yalcin 0000-0002-5121-8232

Project Number TPF-17060
Publication Date March 31, 2020
Acceptance Date January 5, 2020
Published in Issue Year 2020 Volume: 45 Issue: 1

Cite

MLA Sarı, Alime and Gizem Yalcin. “The Investigation of Endoplasmic Reticulum Stress Markers ATF5 and Phosphorylated eIF2α After Kainic Acid Treatment in Neuroblastoma Cells”. Cukurova Medical Journal, vol. 45, no. 1, 2020, pp. 96-101, doi:10.17826/cumj.637075.