Research Article
BibTex RIS Cite

Impact of gossypin on gene expression of HSP60 and HSP70 in different cancer cell lines

Year 2022, Volume: 47 Issue: 2, 497 - 503, 30.06.2022
https://doi.org/10.17826/cumj.1052787

Abstract

Purpose: The aim of this study is to evaluate the impact of gossypin on the expression level of heat shock proteins (HSPs) genes in different cancer cells.
Materials and Methods: Cells were grown under standard culture conditions. Cancer cells were treated with different concentrations (5-100 µg/ml) of gossypin and cisplatin (50 µM) as positive control. Cell viability and effective dose range (5-100 µg/ml) of gossypin were determined by MTT at 24, 48 and 72 hours. After RNA isolation and cDNA synthesis, HSP60 and HSP70 gene expression levels were analyzed using RT-PCR. For gene expression analysis, the 2-∆∆ct method was used.
Results: According to the MTT results, 25-50-100 µg/ml of gossypin doses were found effective on HSP60 and HSP70 gene expression levels in the cancer cell lines. Gossypin affected with dose-dependently the expression of HSP60 and HSP70 in the three cell lines. In the three cell lines, 50 µg/ml and 100 µg/ml of gossypin doses significantly reduced the expression of HSP60 and HSP70 compared to control group.
Conclusion: Our results strongly supported the anticarcinogenic effect of gossypin at various doses in different cell lines. However, we believe that further in vivo research and human studies are needed. Our findings suggest that gossypin could be suitable candidate agent for further investigation to develop new strategies for the prevention and/or treatment of different cancer types.

References

  • 1. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as Anticancer Agents. Nutrients. 2020;12(2):457.
  • 2. Kapoor M, Kaur G, Kaur N, Sharma C, Batra K, Singh D. The Traditional Uses, Phytochemistry and Pharmacology of Genus Hibiscus: A Review. European J Med Plants. 2021:1–37.
  • 3. Chandrashekhar VM, Ganapaty S, Ramkishan A, Narsu MlL. Neuroprotective activity of gossypin from Hibiscus vitifolius against global cerebral ischemia model in rats. Indian J Pharmacol. 2013;45(6):575–80.
  • 4. Wang L, Wang X, Chen H, et al. Gossypin inhibits gastric cancer growth by direct targeting of <scp>AURKA</scp> and <scp>RSK2</scp>. Phyther Res. 2018:ptr.6253.
  • 5. Patel K, Kumar V, Verma A, Patel DK. Gossypin: A phytochemical of multispectrum potential. J Coast Life Med. 2017:365–70.
  • 6. Ganapaty S, Chandrashekhar V, Chitme H, Narsu Ml. Free radical scavenging activity of gossypin and nevadensin: An in-vitro evaluation. Indian J Pharmacol. 2007;39(6):281.
  • 7. Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem. 2007;15(4):1749–70.
  • 8. Rasilingam D, Duraisamy S, Subramanian R. Anticonvulsant activity of bioflavonoid gossypin. Bangladesh J Pharmacol. 2008;4(1).
  • 9. Babu BH, Jayram HN, Nair MG, Ajaikumar KB, Padikkala J. Free radical scavenging, antitumor and anticarcinogenic activity of gossypin. J Exp Clin Cancer Res. 2003;22(4):581–9.
  • 10. Prabhakaran D, Rajeshkanna A, Senthamilselvi M. In vitro Anticancer Activity of Hibiscus vitifolius Flowers Ethyl Acetate Fraction against Hepg2 Cell Line. Br J Pharm Res. 2016;9(5):1–5.
  • 11. ÇINAR İ, YAYLA M, BİNNETOĞLU D. Gossypinin insan hepatom (Hep-3B) hücreleri üzerinde anti-proliferatif etkisi. Cukurova Med J. 2020;45(3):1165–72.
  • 12. Kunnumakkara AB, Nair AS, Ahn KS, et al. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-κB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood. 2007;109(12):5112–21.
  • 13. Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol. 2022;2257:293–310.
  • 14. Liu T, Daniels CK, Cao S. Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther. 2012;136(3):354–74.
  • 15. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci. 2017;38(3):226–56.
  • 16. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10(2):86. 17. Calderwood SK, Gong J. Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends Biochem Sci. 2016;41(4):311–23.
  • 18. Nahleh Z, Tfayli A, Najm A, El Sayed A, Nahle Z. Heat shock proteins in cancer: targeting the ‘chaperones.’ Future Med Chem. 2012;4(7):927–35.
  • 19. Klimczak M, Biecek P, Zylicz A, Zylicz M. Heat shock proteins create a signature to predict the clinical outcome in breast cancer. Sci Rep. 2019;9(1):7507.
  • 20. Yang S, Xiao H, Cao L. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacother. 2021;142:112074.
  • 21. Mittal S, Rajala MS. Heat shock proteins as biomarkers of lung cancer. Cancer Biol Ther. 2020;21(6):477–85.
  • 22. Cinar I. Apoptosis-Inducing Activity and Antiproliferative Effect of Gossypin on PC-3 Prostate Cancer Cells. Anticancer Agents Med Chem. 2021;21(4):445–50.
  • 23. Ischia J, So AI. The role of heat shock proteins in bladder cancer. Nat Rev Urol. 2013;10(7):386–95.
  • 24. Lallier M, Marchandet L, Moukengue B, et al. Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells. 2021;10(4).
  • 25. Das JK, Xiong X, Ren X, Yang J-M, Song J. Heat Shock Proteins in Cancer Immunotherapy. J Oncol. 2019;2019:3267207.
  • 26. Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel). 2019;11(8).
  • 27. Azad AA, Zoubeidi A, Gleave ME, Chi KN. Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol. 2015;12(1):26–36.
  • 28. So A, Hadaschik B, Sowery R, Gleave M. The role of stress proteins in prostate cancer. Curr Genomics. 2007;8(4):252–61.
  • 29. Glaessgen A, Jonmarker S, Lindberg A, et al. Heat shock proteins 27, 60 and 70 as prognostic markers of prostate cancer. APMIS. 2008;116(10):888–95.
  • 30. Lv L-H, Wan Y-L, Lin Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem. 2012;287(19):15874–85.
  • 31. Gullett NP, Ruhul Amin ARM, Bayraktar S, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37(3):258–81.
  • 32. Wang L, Wang X, Chen H, et al. Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2. Phytother Res. 2019;33(3):640–50.
  • 33. Bhaskaran S, Dileep K V, Deepa SS, et al. Gossypin as a novel selective dual inhibitor of V-RAF murine sarcoma viral oncogene homolog B1 and cyclin-dependent kinase 4 for melanoma. Mol Cancer Ther. 2013;12(4):361–72.
  • 34. Shi L, Chen J, Wang Y, et al. Gossypin induces G2/M arrest in human malignant glioma U251 cells by the activation of Chk1/Cdc25C pathway. Cell Mol Neurobiol. 2012;32(2):289–96.
  • 35. Han T, Li J, Xue J, et al. Scutellarin derivatives as apoptosis inducers: Design, synthesis and biological evaluation. Eur J Med Chem. 2017;135:270–81.
  • 36. Sahin K, Akdemir F, Tuzcu M, et al. Genistein suppresses spontaneous oviduct tumorigenesis in quail. Nutr Cancer. 2009;61(6):799–806.
  • 37. Kıyga E, Şengelen A, Adıgüzel Z, Önay Uçar E. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol Biol Rep. 2020;47(7):4957–67.
  • 38. Hassanzadeh A, Hosseinzadeh E, Rezapour S, Vahedi G, Haghnavaz N, Marofi F. Quercetin Promotes Cell Cycle Arrest and Apoptosis and Attenuates the Proliferation of Human Chronic Myeloid Leukemia Cell Line-K562 Through Interaction with HSPs (70 and 90), MAT2A and FOXM1. Anticancer Agents Med Chem. 2019;19(12):1523–34.
  • 39. Liu H-J, Jiang X-X, Guo Y-Z, et al. The flavonoid TL-2-8 induces cell death and immature mitophagy in breast cancer cells via abrogating the function of the AHA1/Hsp90 complex. Acta Pharmacol Sin. 2017;38(10):1381–93.
  • 40. Rahman MA, Ramli F, Karimian H, et al. Artonin E Induces Apoptosis via Mitochondrial Dysregulation in SKOV-3 Ovarian Cancer Cells. PLoS One. 2016;11(3):e0151466.
  • 41. Kim JA, Lee S, Kim D-E, Kim M, Kwon B-M, Han DC. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter. Carcinogenesis. 2015;36(6):696–706.

Gossypin'in farklı kanser hücre dizilerinde HSP60 ve HSP70'in gen ekspresyonu üzerindeki etkisi

Year 2022, Volume: 47 Issue: 2, 497 - 503, 30.06.2022
https://doi.org/10.17826/cumj.1052787

Abstract

Amaç: Bu çalışmanın amacı, gossypin'in farklı kanser hücre hatlarında ısı şok proteinleri (HSP) genlerinin ekspresyon seviyesi üzerindeki etkisini incelemektir.
Gereç ve Yöntem: Hücreler, standart kültür koşulları altında büyütüldü. Kanser hücreleri, farklı konsantrasyonlarda (5-100 µg/ml) gossypin ve pozitif kontrol olarak sisplatin (50 µM) ile muamele edildi. Gossypin'in hücre canlılığı ve etkili doz aralığı (5-100 µg/ml), 24, 48 ve 72. saatlerde MTT ile belirlendi. RNA izolasyonu ve cDNA sentezinden sonra, HSP60 ve HSP70 gen ekpresyon seviyesi RT-PCR ile analiz edildi. Gen ekspresyonu için 2-∆∆ct methodu kullanıldı.
Bulgular: MTT sonuçlarına göre kanser hücre hatlarında 25-50-100 µg/ml gossipin dozlarının HSP60 ve HSP70 gen ekspresyon seviyeleri üzerinde etkili olduğu bulundu. Gossypin, üç hücre hattında HSP60 ve HSP70'in ekspresyonunu doza bağımlı olarak etkilemiştir. Üç hücre hattında, 50 µg/ml ve 100 µg/ml gossipin dozları, HSP60 ve HSP70'in ekspresyonunu kontrol grubuna kıyasla önemli ölçüde azalttı.
Sonuç: Sonuçlarımız, farklı hücre dizilerinde çeşitli dozlarda gossypinin antikarsinojenik etkisini güçlü bir şekilde desteklemektedir. Fakat, daha fazla in vivo araştırma ve insan çalışmalarına ihtiyaç olduğuna inanıyoruz. Bulgularımız, gossypin'nin farklı kanser türlerinin önlenmesi ve/veya tedavisi için yeni stratejiler geliştirmek için daha ileri araştırmalar için uygun aday ajan olabileceğini düşündürmektedir.

References

  • 1. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as Anticancer Agents. Nutrients. 2020;12(2):457.
  • 2. Kapoor M, Kaur G, Kaur N, Sharma C, Batra K, Singh D. The Traditional Uses, Phytochemistry and Pharmacology of Genus Hibiscus: A Review. European J Med Plants. 2021:1–37.
  • 3. Chandrashekhar VM, Ganapaty S, Ramkishan A, Narsu MlL. Neuroprotective activity of gossypin from Hibiscus vitifolius against global cerebral ischemia model in rats. Indian J Pharmacol. 2013;45(6):575–80.
  • 4. Wang L, Wang X, Chen H, et al. Gossypin inhibits gastric cancer growth by direct targeting of <scp>AURKA</scp> and <scp>RSK2</scp>. Phyther Res. 2018:ptr.6253.
  • 5. Patel K, Kumar V, Verma A, Patel DK. Gossypin: A phytochemical of multispectrum potential. J Coast Life Med. 2017:365–70.
  • 6. Ganapaty S, Chandrashekhar V, Chitme H, Narsu Ml. Free radical scavenging activity of gossypin and nevadensin: An in-vitro evaluation. Indian J Pharmacol. 2007;39(6):281.
  • 7. Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem. 2007;15(4):1749–70.
  • 8. Rasilingam D, Duraisamy S, Subramanian R. Anticonvulsant activity of bioflavonoid gossypin. Bangladesh J Pharmacol. 2008;4(1).
  • 9. Babu BH, Jayram HN, Nair MG, Ajaikumar KB, Padikkala J. Free radical scavenging, antitumor and anticarcinogenic activity of gossypin. J Exp Clin Cancer Res. 2003;22(4):581–9.
  • 10. Prabhakaran D, Rajeshkanna A, Senthamilselvi M. In vitro Anticancer Activity of Hibiscus vitifolius Flowers Ethyl Acetate Fraction against Hepg2 Cell Line. Br J Pharm Res. 2016;9(5):1–5.
  • 11. ÇINAR İ, YAYLA M, BİNNETOĞLU D. Gossypinin insan hepatom (Hep-3B) hücreleri üzerinde anti-proliferatif etkisi. Cukurova Med J. 2020;45(3):1165–72.
  • 12. Kunnumakkara AB, Nair AS, Ahn KS, et al. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-κB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood. 2007;109(12):5112–21.
  • 13. Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol. 2022;2257:293–310.
  • 14. Liu T, Daniels CK, Cao S. Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther. 2012;136(3):354–74.
  • 15. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci. 2017;38(3):226–56.
  • 16. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10(2):86. 17. Calderwood SK, Gong J. Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends Biochem Sci. 2016;41(4):311–23.
  • 18. Nahleh Z, Tfayli A, Najm A, El Sayed A, Nahle Z. Heat shock proteins in cancer: targeting the ‘chaperones.’ Future Med Chem. 2012;4(7):927–35.
  • 19. Klimczak M, Biecek P, Zylicz A, Zylicz M. Heat shock proteins create a signature to predict the clinical outcome in breast cancer. Sci Rep. 2019;9(1):7507.
  • 20. Yang S, Xiao H, Cao L. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacother. 2021;142:112074.
  • 21. Mittal S, Rajala MS. Heat shock proteins as biomarkers of lung cancer. Cancer Biol Ther. 2020;21(6):477–85.
  • 22. Cinar I. Apoptosis-Inducing Activity and Antiproliferative Effect of Gossypin on PC-3 Prostate Cancer Cells. Anticancer Agents Med Chem. 2021;21(4):445–50.
  • 23. Ischia J, So AI. The role of heat shock proteins in bladder cancer. Nat Rev Urol. 2013;10(7):386–95.
  • 24. Lallier M, Marchandet L, Moukengue B, et al. Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells. 2021;10(4).
  • 25. Das JK, Xiong X, Ren X, Yang J-M, Song J. Heat Shock Proteins in Cancer Immunotherapy. J Oncol. 2019;2019:3267207.
  • 26. Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel). 2019;11(8).
  • 27. Azad AA, Zoubeidi A, Gleave ME, Chi KN. Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol. 2015;12(1):26–36.
  • 28. So A, Hadaschik B, Sowery R, Gleave M. The role of stress proteins in prostate cancer. Curr Genomics. 2007;8(4):252–61.
  • 29. Glaessgen A, Jonmarker S, Lindberg A, et al. Heat shock proteins 27, 60 and 70 as prognostic markers of prostate cancer. APMIS. 2008;116(10):888–95.
  • 30. Lv L-H, Wan Y-L, Lin Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem. 2012;287(19):15874–85.
  • 31. Gullett NP, Ruhul Amin ARM, Bayraktar S, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37(3):258–81.
  • 32. Wang L, Wang X, Chen H, et al. Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2. Phytother Res. 2019;33(3):640–50.
  • 33. Bhaskaran S, Dileep K V, Deepa SS, et al. Gossypin as a novel selective dual inhibitor of V-RAF murine sarcoma viral oncogene homolog B1 and cyclin-dependent kinase 4 for melanoma. Mol Cancer Ther. 2013;12(4):361–72.
  • 34. Shi L, Chen J, Wang Y, et al. Gossypin induces G2/M arrest in human malignant glioma U251 cells by the activation of Chk1/Cdc25C pathway. Cell Mol Neurobiol. 2012;32(2):289–96.
  • 35. Han T, Li J, Xue J, et al. Scutellarin derivatives as apoptosis inducers: Design, synthesis and biological evaluation. Eur J Med Chem. 2017;135:270–81.
  • 36. Sahin K, Akdemir F, Tuzcu M, et al. Genistein suppresses spontaneous oviduct tumorigenesis in quail. Nutr Cancer. 2009;61(6):799–806.
  • 37. Kıyga E, Şengelen A, Adıgüzel Z, Önay Uçar E. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol Biol Rep. 2020;47(7):4957–67.
  • 38. Hassanzadeh A, Hosseinzadeh E, Rezapour S, Vahedi G, Haghnavaz N, Marofi F. Quercetin Promotes Cell Cycle Arrest and Apoptosis and Attenuates the Proliferation of Human Chronic Myeloid Leukemia Cell Line-K562 Through Interaction with HSPs (70 and 90), MAT2A and FOXM1. Anticancer Agents Med Chem. 2019;19(12):1523–34.
  • 39. Liu H-J, Jiang X-X, Guo Y-Z, et al. The flavonoid TL-2-8 induces cell death and immature mitophagy in breast cancer cells via abrogating the function of the AHA1/Hsp90 complex. Acta Pharmacol Sin. 2017;38(10):1381–93.
  • 40. Rahman MA, Ramli F, Karimian H, et al. Artonin E Induces Apoptosis via Mitochondrial Dysregulation in SKOV-3 Ovarian Cancer Cells. PLoS One. 2016;11(3):e0151466.
  • 41. Kim JA, Lee S, Kim D-E, Kim M, Kwon B-M, Han DC. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter. Carcinogenesis. 2015;36(6):696–706.
There are 40 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Ebubekir Dirican 0000-0001-9260-5223

İrfan Çınar 0000-0002-9826-2556

Publication Date June 30, 2022
Acceptance Date June 6, 2022
Published in Issue Year 2022 Volume: 47 Issue: 2

Cite

MLA Dirican, Ebubekir and İrfan Çınar. “Impact of Gossypin on Gene Expression of HSP60 and HSP70 in Different Cancer Cell Lines”. Cukurova Medical Journal, vol. 47, no. 2, 2022, pp. 497-03, doi:10.17826/cumj.1052787.