BibTex RIS Kaynak Göster
Yıl 2015, Cilt: 36 Sayı: 3, 2223 - 2233, 13.05.2015

Öz

Kaynakça

  • Bluman J.W., Kumei S. (1989). Symmetry and Differential Equations. New York: Applied Mathematic SciencesSpringer-Verlag.
  • Hopf E. (1950). The Partial Differential Equation t uux ut
  • xx. 3, pp. 201-230. ME:
  • uxx. 3, pp. 201-230. ME:
  • Comm. Pue Appl. Math.
  • Kumei S. (n.d.). A Group Classification on Non-Linear Differential Equations. Vancouver, BC.: Ph.D. Thesis, University of British Colombia,.
  • Matsuda M. (1970). Two Methods of Integrating Monge-Ampere Equations I,. 150, pp. 327-343. Trans. Amer. Math. Soc.
  • Olver P.J. (1979). Symmetry Group and Group Invariant Solution of Partial Differential Equations. 14, pp. 497-442. J., Differential Geometry,.
  • Olver P.J. (1993). Application of Lie Groups to Differential Equations. 107. New York: Second Edition, Graduate Texts in Mathematics, Springer-Verlag.
  • Stephani H. (1989). Differential Equations, Their Solutions Using Symmetries. New York: Cambridge University Press, Cambridge.
  • W.F., A. (1972). Nonlinear Partial Differential Equations in Engineering. New York: Academic Press.

Lie Symmetry Method for Solutions of Differential Equations with Applications in Physics

Yıl 2015, Cilt: 36 Sayı: 3, 2223 - 2233, 13.05.2015

Öz

Abstract. A mathematical method in pure mathematics (differential geometry) for finding solutions of differential equations is considered. The method is based on constructing a Lie algebra associated to a given system of differential equation, called Lie algebra of the symmetries of the given system. This Lie algebra is a vector space which maps a given solution, such as a constant solution, to another solution, it is a significant tool for finding new solution for system of differential equation specially partial differential equations. Then we will apply it to some differential equations in fluid mechanics and physics.

Kaynakça

  • Bluman J.W., Kumei S. (1989). Symmetry and Differential Equations. New York: Applied Mathematic SciencesSpringer-Verlag.
  • Hopf E. (1950). The Partial Differential Equation t uux ut
  • xx. 3, pp. 201-230. ME:
  • uxx. 3, pp. 201-230. ME:
  • Comm. Pue Appl. Math.
  • Kumei S. (n.d.). A Group Classification on Non-Linear Differential Equations. Vancouver, BC.: Ph.D. Thesis, University of British Colombia,.
  • Matsuda M. (1970). Two Methods of Integrating Monge-Ampere Equations I,. 150, pp. 327-343. Trans. Amer. Math. Soc.
  • Olver P.J. (1979). Symmetry Group and Group Invariant Solution of Partial Differential Equations. 14, pp. 497-442. J., Differential Geometry,.
  • Olver P.J. (1993). Application of Lie Groups to Differential Equations. 107. New York: Second Edition, Graduate Texts in Mathematics, Springer-Verlag.
  • Stephani H. (1989). Differential Equations, Their Solutions Using Symmetries. New York: Cambridge University Press, Cambridge.
  • W.F., A. (1972). Nonlinear Partial Differential Equations in Engineering. New York: Academic Press.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Bölüm Derleme
Yazarlar

Seyed Reza Hejazı

Elaheh Saberı Bu kişi benim

Paeezeh Mahdavı Bu kişi benim

Yayımlanma Tarihi 13 Mayıs 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 36 Sayı: 3

Kaynak Göster

APA Hejazı, S. R., Saberı, E., & Mahdavı, P. (2015). Lie Symmetry Method for Solutions of Differential Equations with Applications in Physics. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 2223-2233.
AMA Hejazı SR, Saberı E, Mahdavı P. Lie Symmetry Method for Solutions of Differential Equations with Applications in Physics. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. Mayıs 2015;36(3):2223-2233.
Chicago Hejazı, Seyed Reza, Elaheh Saberı, ve Paeezeh Mahdavı. “Lie Symmetry Method for Solutions of Differential Equations With Applications in Physics”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36, sy. 3 (Mayıs 2015): 2223-33.
EndNote Hejazı SR, Saberı E, Mahdavı P (01 Mayıs 2015) Lie Symmetry Method for Solutions of Differential Equations with Applications in Physics. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36 3 2223–2233.
IEEE S. R. Hejazı, E. Saberı, ve P. Mahdavı, “Lie Symmetry Method for Solutions of Differential Equations with Applications in Physics”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 36, sy. 3, ss. 2223–2233, 2015.
ISNAD Hejazı, Seyed Reza vd. “Lie Symmetry Method for Solutions of Differential Equations With Applications in Physics”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36/3 (Mayıs 2015), 2223-2233.
JAMA Hejazı SR, Saberı E, Mahdavı P. Lie Symmetry Method for Solutions of Differential Equations with Applications in Physics. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36:2223–2233.
MLA Hejazı, Seyed Reza vd. “Lie Symmetry Method for Solutions of Differential Equations With Applications in Physics”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 36, sy. 3, 2015, ss. 2223-3.
Vancouver Hejazı SR, Saberı E, Mahdavı P. Lie Symmetry Method for Solutions of Differential Equations with Applications in Physics. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36(3):2223-3.