BibTex RIS Kaynak Göster
Yıl 2015, Cilt: 36 Sayı: 3, 2234 - 2241, 13.05.2015

Öz

Kaynakça

  • Hu, M., Ji, S., Peng, S., & Song, Y. (2014). Backward stochastic differential equations driven by G-Brownian motion.Stochastic Processes and their Applications,124(1), 759- 7
  • S. Peng, Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Math. Appl. Sin. 20 (2) (2004) 1–24.
  • S. Peng, Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. B 26 (2) (2005) 159–184.
  • S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, 2010. arXiv:1002.4546v1 [math.PR].
  • S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty, 200 arXiv:0711.2834v1 [math.PR].
  • S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Ito type, in: Stochastic Analysis and Applications, in: Abel Symp., vol. 2, Springer, Berlin, 2007, pp. 541–567.
  • S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G- expectation, Stochastic Process. Appl. 118 (12) (2008) 2223–2253.
  • S. Peng, A new central limit theorem under sublinear expectations, 2008. arXiv:0803.2656v1 [math.PR].
  • Oksendal, B.(2003). Stochastic differential equations (pp20-26).Springer Berlin Heidelberg.
  • Cheridito, P., Soner, H.M., Touzi, N. and Victoir, N., Second order backward stochastic differential equations and fully non-linear parabolic PDEs, Preprint (pdf-file available in arXiv: math.PR/0509295 v1 14 Sep 2005).

Lp Solutions of -Backward Stochastic Differential Equations with Continuous Coefficients

Yıl 2015, Cilt: 36 Sayı: 3, 2234 - 2241, 13.05.2015

Öz

Abstract. In this paper, we study -backward stochastic differential equations with continuous coefficients. We give existence and uniqueness results for G-backward stochastic differential equations, when the generator  is uniformly continuous in , and the terminal value with .

We consider the G-backward stochastic differential equations driven by a G-Brownian motion in the following form:

                                                           (1)

where  and  are unknown and the random function , called the generator, and the random variable , called terminal value, are given. Our main result of this paper is the existence and uniqueness of a solution  for (1) in the G-framework.

Kaynakça

  • Hu, M., Ji, S., Peng, S., & Song, Y. (2014). Backward stochastic differential equations driven by G-Brownian motion.Stochastic Processes and their Applications,124(1), 759- 7
  • S. Peng, Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Math. Appl. Sin. 20 (2) (2004) 1–24.
  • S. Peng, Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. B 26 (2) (2005) 159–184.
  • S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, 2010. arXiv:1002.4546v1 [math.PR].
  • S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty, 200 arXiv:0711.2834v1 [math.PR].
  • S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Ito type, in: Stochastic Analysis and Applications, in: Abel Symp., vol. 2, Springer, Berlin, 2007, pp. 541–567.
  • S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G- expectation, Stochastic Process. Appl. 118 (12) (2008) 2223–2253.
  • S. Peng, A new central limit theorem under sublinear expectations, 2008. arXiv:0803.2656v1 [math.PR].
  • Oksendal, B.(2003). Stochastic differential equations (pp20-26).Springer Berlin Heidelberg.
  • Cheridito, P., Soner, H.M., Touzi, N. and Victoir, N., Second order backward stochastic differential equations and fully non-linear parabolic PDEs, Preprint (pdf-file available in arXiv: math.PR/0509295 v1 14 Sep 2005).
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Bölüm Derleme
Yazarlar

Mojtaba Malekı

Elham Dastranj Bu kişi benim

Reza Hejazı Bu kişi benim

Yayımlanma Tarihi 13 Mayıs 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 36 Sayı: 3

Kaynak Göster

APA Malekı, M., Dastranj, E., & Hejazı, R. (2015). Lp Solutions of -Backward Stochastic Differential Equations with Continuous Coefficients. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 2234-2241.
AMA Malekı M, Dastranj E, Hejazı R. Lp Solutions of -Backward Stochastic Differential Equations with Continuous Coefficients. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. Mayıs 2015;36(3):2234-2241.
Chicago Malekı, Mojtaba, Elham Dastranj, ve Reza Hejazı. “Lp Solutions of -Backward Stochastic Differential Equations With Continuous Coefficients”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36, sy. 3 (Mayıs 2015): 2234-41.
EndNote Malekı M, Dastranj E, Hejazı R (01 Mayıs 2015) Lp Solutions of -Backward Stochastic Differential Equations with Continuous Coefficients. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36 3 2234–2241.
IEEE M. Malekı, E. Dastranj, ve R. Hejazı, “Lp Solutions of -Backward Stochastic Differential Equations with Continuous Coefficients”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 36, sy. 3, ss. 2234–2241, 2015.
ISNAD Malekı, Mojtaba vd. “Lp Solutions of -Backward Stochastic Differential Equations With Continuous Coefficients”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36/3 (Mayıs 2015), 2234-2241.
JAMA Malekı M, Dastranj E, Hejazı R. Lp Solutions of -Backward Stochastic Differential Equations with Continuous Coefficients. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36:2234–2241.
MLA Malekı, Mojtaba vd. “Lp Solutions of -Backward Stochastic Differential Equations With Continuous Coefficients”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 36, sy. 3, 2015, ss. 2234-41.
Vancouver Malekı M, Dastranj E, Hejazı R. Lp Solutions of -Backward Stochastic Differential Equations with Continuous Coefficients. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36(3):2234-41.