BibTex RIS Cite

Hypergeometric transforms in subclasses of univalent functions

Year 2015, Volume: 36 Issue: 3, 2299 - 2306, 13.05.2015

Abstract

Abstract. In the present paper, we obtain certain sufficient conditions for special analytic functions to be in the class of normalized analytic functions satisfying the condition  for | z |< 1, where  is a given real number. The purpose of the present paper is to investigate various mapping and inclusion properties involving subclasses of analytic and univalent functions for a linear operator defined by means of Hadamard product  with the Gaussian hypergeometric function.

References

  • Breaz, D. (2003).“Integral Operators on the UCD(β)-Class,” Proceedings of the International conference of Theory and Applications of Mathematics and Informatics – ICTAMI, Alba Lulia, 61–66.
  • Dixit, K.K., Pal, S.K. (1995) “On a class of univalent functions related to complex order,” Indian J. Pure Appl. Math. 26, 889-896.
  • Goodman, A.W. (1991). “On uniformly convex functions,” Ann. Polon. Math. 56, 87–92.
  • Jack, I.S. (1971). “Functions starlike and convex of order α,” J. Lond.Math. Soc. 3, 469- 474.
  • Padmanabhan, K.S. (1970/71). “On a certain class of functions whose derivatives have a positive real part in the unit disc,” Ann. Pol.Math. 23, 73-81.
  • Ponusamy, S., Rİnning, F. (1998) “Starlikeness properties for convolutions involving hypergeometric series,” Ann. Univ. Mariae Curie-Sk¯lodowska, Sect. A 52, 141-155.
  • Ronning, F. (1993). “Uniformly convex functions and a corresponding class of starlike functions,” Proc. Am. Math. Soc. 118 (1) 189–196.
  • Srivastava, H.M., Mishra, A.K. (2000). “Applications of fractional calculus to parabolic starlike and uniformly convex functions,” Comput. Math. Appl. 39 (3/4), 57–69.
  • Subramanian, K.G., Murugusundaramoorthy, G., Balasubrahmanyam, P., Silverman, H. (1995). “Subclass of uniformly convex and uniformly starlike functions,” Math. Jpn. 42, 512-522.
Year 2015, Volume: 36 Issue: 3, 2299 - 2306, 13.05.2015

Abstract

References

  • Breaz, D. (2003).“Integral Operators on the UCD(β)-Class,” Proceedings of the International conference of Theory and Applications of Mathematics and Informatics – ICTAMI, Alba Lulia, 61–66.
  • Dixit, K.K., Pal, S.K. (1995) “On a class of univalent functions related to complex order,” Indian J. Pure Appl. Math. 26, 889-896.
  • Goodman, A.W. (1991). “On uniformly convex functions,” Ann. Polon. Math. 56, 87–92.
  • Jack, I.S. (1971). “Functions starlike and convex of order α,” J. Lond.Math. Soc. 3, 469- 474.
  • Padmanabhan, K.S. (1970/71). “On a certain class of functions whose derivatives have a positive real part in the unit disc,” Ann. Pol.Math. 23, 73-81.
  • Ponusamy, S., Rİnning, F. (1998) “Starlikeness properties for convolutions involving hypergeometric series,” Ann. Univ. Mariae Curie-Sk¯lodowska, Sect. A 52, 141-155.
  • Ronning, F. (1993). “Uniformly convex functions and a corresponding class of starlike functions,” Proc. Am. Math. Soc. 118 (1) 189–196.
  • Srivastava, H.M., Mishra, A.K. (2000). “Applications of fractional calculus to parabolic starlike and uniformly convex functions,” Comput. Math. Appl. 39 (3/4), 57–69.
  • Subramanian, K.G., Murugusundaramoorthy, G., Balasubrahmanyam, P., Silverman, H. (1995). “Subclass of uniformly convex and uniformly starlike functions,” Math. Jpn. 42, 512-522.
There are 9 citations in total.

Details

Journal Section Special
Authors

Roya Ghasemkhani

Publication Date May 13, 2015
Published in Issue Year 2015 Volume: 36 Issue: 3

Cite

APA Ghasemkhani, R. (2015). Hypergeometric transforms in subclasses of univalent functions. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 2299-2306.
AMA Ghasemkhani R. Hypergeometric transforms in subclasses of univalent functions. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. May 2015;36(3):2299-2306.
Chicago Ghasemkhani, Roya. “Hypergeometric Transforms in Subclasses of Univalent Functions”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36, no. 3 (May 2015): 2299-2306.
EndNote Ghasemkhani R (May 1, 2015) Hypergeometric transforms in subclasses of univalent functions. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36 3 2299–2306.
IEEE R. Ghasemkhani, “Hypergeometric transforms in subclasses of univalent functions”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 36, no. 3, pp. 2299–2306, 2015.
ISNAD Ghasemkhani, Roya. “Hypergeometric Transforms in Subclasses of Univalent Functions”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36/3 (May 2015), 2299-2306.
JAMA Ghasemkhani R. Hypergeometric transforms in subclasses of univalent functions. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36:2299–2306.
MLA Ghasemkhani, Roya. “Hypergeometric Transforms in Subclasses of Univalent Functions”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 36, no. 3, 2015, pp. 2299-06.
Vancouver Ghasemkhani R. Hypergeometric transforms in subclasses of univalent functions. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36(3):2299-306.