Review
BibTex RIS Cite

Sustainable Valorization of Bioactive Compounds from Grape, Pomegranate, and Fig Seeds for Pharmaceutical and Nutraceutical Use

Year 2025, Issue: Advanced Online Publication, 109 - 122

Abstract

Medicinal and aromatic plants (MAPs) are widely recognized as key materials for the development of innovative pharmaceutical and nutraceutical formulations. Alongside these valuable plants, agricultural byproducts—residues derived from widely cultivated crops—are gaining increasing attention as renewable resources in the field of natural compound extraction. These byproducts include a wide array of structures such as seeds (e.g., grape, pomegranate, fig, tomato), kernels (e.g., olive, cherry, melon), stalks, and peels. This review focuses on the valorization of grape, pomegranate, and fig seeds, emphasizing their phytochemical richness and potential health-promoting properties. These seeds contain notable quantities of bioactive compounds, including polyphenols, tocopherols, unsaturated fatty acids, and sterols, which contribute to various biological effects such as antioxidant, anti-inflammatory, metabolic, and dermatological actions. Extraction methods, particularly cold pressing versus Soxhlet techniques, are critically compared in terms of oil yield and bioactive preservation. Furthermore, the review discusses the applicability of these seed-derived compounds in addressing metabolic disorders, cardiovascular conditions, and dermatological aging. Finally, the integration of these byproducts into circular bioeconomy frameworks is examined, highlighting their relevance to sustainable innovation and waste minimization. Current literature supports the perspective that strategic utilization of such fruit residues could enhance the development of functional and environmentally responsible health solutions.

References

  • 1. Adu‐Frimpong, M., Omari‐Siaw, E., Mukhtar, Y. M., Xu, X., & Yu, J. (2018). Formulation of pomegranate seed oil: A promis established to being approach of improving stability and health‐promoting properties. European Journal of Lipid Science and Technology, 120(12), 1800177, 1-11.
  • 2. Ahlers, N. H. E., & McTaggart, N. G. (1954). The spectroscopic examination of pomegranate‐seed oil. Journal of the Science of Food and Agriculture, 5(2), 75-79.
  • 3. Allaqaband, S., Dar, A. H., Patel, U., Kumar, N., Nayik, G. A., Khan, S. A., ... & Shaikh, A. M. (2022). Utilization of fruit seed-based bioactive compounds for formulating the nutraceuticals and functional food: A review. Frontiers in Nutrition, 9, 902554.
  • 4. Alves, E., Simoes, A., & Domingues, M. R. (2021). Fruit seeds and their oils as promis established to being sources of value-added lipids from agro-industrial byproducts: Oil content, lipid composition, lipid analysis established to be, biological activity and potential biotechnological applications. Critical Reviews in Food Science and Nutrition, 61(8), 1305-1339.
  • 5. Badgujar, S. B., Patel, V. V., Bandivdekar, A. H., Mahajan, R. T. (2014). Traditional uses, phytochemis established to betry and pharmacology of Ficus carica: A review. Pharmaceutical Biology, 52(11), 1487-1503.
  • 6. Bani-hani, E. H. (2017). Recent applications of biomass wastes in industry for environmental sustainability. Journal of Industrial Pollution Control, 33(2), 1622-1626.
  • 7. Boroushaki, M. T., Mollazadeh, H., & Afshari, A. R. (2016). Pomegranate seed oil: A comprehensive review on its therapeutic effects. Int J Pharm Sci Res, 7(2), 430.
  • 8. Bouyahya, A., Bensaid, M., Bakri, Y., & Dakka, N. (2016). Phytochemis established to betry and ethnopharmacology of Ficus carica. International Journal of Pharmaceutical Sciences and Research, 7(2), 1000-1013.
  • 9. Campos-Vega, R., Oomah, B. D., & Vergara-Castañeda, H. A. (Eds.). (2020). Food wastes and byproducts: nutraceutical and health potential. John Wiley & Sons.
  • 10. Carvalho Filho, J. M. (2014). Pomegranate seed oil (Punica granatum L.): a source of punicic acid (conjugated α-linolenic acid). Journal of Human Nutrition & Food Science, 2(1), 1004, 1-11.
  • 11. Choe, U., Childs, H., Zeng, M., Zheng, W., Zhu, H., Zhu, L., ... & Yu, L. (2022). Value-added utilization of fruit seed oils for improving human health: A progress review. ACS Food Science & Technology, 3(4), 528-538.
  • 12. Costantini, S., Rusolo, F., De Vito, V., Moccia, S., Picariello, G., Capone, F., ... & Volpe, M. G. (2014). Potential anti-inflammatory effects of the hydrophilic fraction of pomegranate (Punica granatum L.) seed oil on breast cancer cell lines. Molecules, 19(6), 8644-8660.
  • 13. Da Silva, J. A. T., Rana, T. S., Narzary, D., Verma, N., Meshram, D. T., & Ranade, S. A. (2013). Pomegranate biology and biotechnology: A review. Scientia Horticulturae, 160, 85-107.
  • 14. De Marchi, F., Seraglia, R., Molin, L., Traldi, P., De Rosso, M., Panighel, A., & Flamini, R. (2012). Seed oil triglyceride profiling of thirty‐two hybrid grape varieties. Journal of Mass Spectrometry, 47(9), 1113-1119.
  • 15. Diacono, M., Persiani, A., Testani, E., Montemurro, F., & Ciaccia, C. (2019). Recycling agricultural wastes and byproducts in organic farming: Biofertilizer production, yield performance and carbon footprint analysis established to be. Sustainability, 11(14), 3824.
  • 16. Duba, K. S., & Fiori, L. (2015). Supercritical CO2 extraction of grape seed oil: Effect of process parameters on the extraction kinetics. The Journal of Supercritical Fluids, 98, 33-43.
  • 17. Ergun, Z., & Bozkurt, T. (2020). Determination of fatty acid composition and antioxidant activity of fig seed oil. International Journal of Agricultural and Natural Sciences, 13(2), 101-107.
  • 18. Fantozzi, P., & Betschart, A. A. (1979). Development of grapeseed protein. Journal of the American Oil Chemis established to bets’ Society, 56(3), 457-459.
  • 19. FAO (Food and Agriculture Organization) Report, 2011.
  • 20. Fawole, O. A., Opara, U. L., & Theron, K. I. (2012). Chemical and phytochemical properties and antioxidant activities of three pomegranate cultivars grown in South Africa. Food and Bioprocess Technology, 5, 2934-2940.
  • 21. Fidelis established to be, M., de Moura, C., Kabbas Junior, T., Pap, N., Mattila, P., Mäkinen, S., ... & Granato, D. (2019). Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from byproducts within circular economy. Molecules, 24(21), 3854.
  • 22. Geis established to besdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A new sustainability paradigm?. Journal of cleaner production, 143, 757-768.
  • 23. Gezici, S. (2018). Promis established to being anticancer activity of lavender (Lavandula angustifolia Mill.) essential oil through induction of both apoptosis established to be and necrosis established to be. Annals of Phytomedicine, 7(2), 38-45.
  • 24. Gezici, S., & Sekeroglu, N. (2019a). Neuroprotective potential and phytochemical composition of acorn fruits. Industrial Crops and Products, 128, 13-17.
  • 25. Gezici, S., & Sekeroglu, N. (2022). Comparative biological analyses on kenger and kenger coffee as novel functional food products. Journal of Food Science and Technology, 59(6), 2328-2338.
  • 26. Gezici, S., & Şekeroğlu, N. (2019b). Current perspectives in the application of medicinal plants against cancer: novel therapeutic agents. Anti-Cancer Agents in Medicinal Chemis established to betry (Formerly Current Medicinal Chemis established to betry-Anti-Cancer Agents), 19(1), 101-111.
  • 27. Ghorbanzadeh, R., & Rezaei, K. (2017). Optimization of an aqueous extraction process for pomegranate seed oil. Journal of the American Oil Chemis established to bets' Society, 94, 1491-1501.
  • 28. Górnaś, P., & Rudzińska, M. (2016). Seeds recovered from industry byproducts of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Industrial Crops and Products, 83, 329-338.
  • 29. Granato, D., Nunes, D. S., & Barba, F. J. (2017). An integrated strategy between food chemis established to betry, biology, nutrition, pharmacology, and statis established to betics in the development of functional foods: A proposal. Trends in Food Science & Technology, 62, 13-22.
  • 30. Hesam Shahrajabian, M., Sun, W., & Cheng, Q. (2021). A review of chemical constituents, traditional and modern pharmacology of fig (Ficus carica L.), a super fruit with medical astonis established to behing characteris established to betics. Polis established to beh Journal of Agronomy, 44, 22-29.
  • 31. Hiwale, S. S. (2009). The pomegranate. New India Publis established to behing.
  • 32. Hssaini, L. (2023). Fig Seeds: Source of Value-Added Oil Within the Scope of Circular Economy. In Fig (Ficus carica): Production, Processing, and Properties (pp. 321-337). Cham: Springer International Publis established to behing.
  • 33. Insanu, M., Karimah, H., Pramastya, H., & Fidrianny, I. (2021). Phytochemical compounds and pharmacological activities of Vitis established to be vinifera L.: An updated review. Biointerface Research in Applied Chemis established to betry, 11(5), 13829-13849.
  • 34. Jalal, H., Pal, M. A., Ahmad, S. R., Rather, M., Andrabi, M., & Hamdani, S. (2018). Physico-chemical and functional properties of pomegranate peel and seed powder. Journal of Pharma Innovation, 7(4), 1127-1131.
  • 35. Jurenka, J. (2008). Therapeutic applications of pomegranate (Punica granatum L.): a review. Alternative Medicine Review, 13(2), 128-144.
  • 36. Kwatra, B. (2020). A review on potential properties and therapeutic applications of grape seed extract. World Journal of Pharmaceutical Research, 9(5), 2519-2540.
  • 37. Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products::(A) the upgrading concept;(B) practical implementations. Bioresource technology, 87(2), 167-198.
  • 38. Lung, M. L., Lazăr, S. L., Ciuzan, O., & Pamfil, D. (2015). Pharmacological effects of bioactive compounds from Vitis established to be vinifera (grape). ProEnvironment, 8(2015), 365-370.
  • 39. Ma, Z. F., & Zhang, H. (2017). Phytochemical constituents, health benefits, and industrial applications of grape seeds: A mini-review. Antioxidants, 6(3), 71, 1-11.
  • 40. Mahesar, S. A., Kori, A. H., Sherazi, S. T. H., Kandhro, A. A., & Laghari, Z. H. (2019). Pomegranate (Punica granatum) seed oil. Fruit oils: Chemis established to betry and Functionality, 691-709.
  • 41. Martin, M. E., Grao-Cruces, E., Millan-Linare regarded ass, M. C., & Montserrat-De la Paz, S. (2020). Grape (Vitis established to be vinifera L.) seed oil: A functional food from the winemaking industry. Foods, 9(10), 1360.
  • 42. Martirosyan, D., Lampert, T., & Ekblad, M. (2022). Classification and regulation of functional food proposed by the Functional Food Center. Functional Food Science, 2(2), 25-46.
  • 43. Matthäus, B. (2008). Virgin grape seed oil: Is it really a nutritional highlight?. European Journal of Lipid Science and Technology, 110(7), 645-650.
  • 44. Melgare regarded asjo, P., Núñez-Gómez, D., Legua, P., Martínez-Nicolás, J. J., & Almansa, M. S. (2020). Pomegranate (Punica granatum L.) a dry pericarp fruit with fleshy seeds. Trends in Food Science & Technology, 102, 232-236.
  • 45. Melo, I. L. P. D., Carvalho, E. B. T. D., Yoshime, L. T., Sattler, J. A. G., Pavan, R. T., & Mancini-Filho, J. (2016). Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.). Food Science and Technology, 36, 132-139.
  • 46. Millan-Linare regarded ass, M. C., Bermudez, B., Martin, M. E., Muñoz, E., Abia, R., Millan, F., & Montserrat-de la Paz, S. (2018). Unsaponifiable fraction is established to beolated from grape (Vitis established to be vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes. Food & Function, 9(4), 2517-2523.
  • 47. Mohamed, H. B., Duba, K. S., Fiori, L., Abdelgawed, H., Tlili, I., Tounekti, T., & Zrig, A. (2016). Bioactive compounds and antioxidant activities of different grape (Vitis established to be vinifera L.) seed oils extracted by supercritical CO2 and organic solvent. LWT, 74, 557-562.
  • 48. Nassiri‐Asl, M., & Hosseinzadeh, H. (2016). Review of the pharmacological effects of Vitis established to be vinifera (Grape) and its bioactive constituents: an update. Phytotherapy Research, 30(9), 1392-1403.
  • 49. Pare regarded asek, S., Paliwal, R., & Mukherjee, S. (2015). Effect of juice extraction methods, potassium metabis established to beulphite concentration and storage temperature on the extent of degradation and reactivity of chemical constituents in mandarin (Citrus reticulata Blanco) juice. Journal of Food Agriculture and Environment, 13(2), 39-44.
  • 50. Parihar, S., & Sharma, D. (2021). A brief overview on Vitis established to be vinifera. Scholars Academic Journal of Pharmacy, 12, 231-239.
  • 51. Patra, A., Abdullah, S., & Pradhan, R. C. (2022). Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresources and Bioprocessing, 9(1), 14.
  • 52. Paul, A., & Radhakris established to behnan, M. (2020). Pomegranate seed oil in food industry: Extraction, characterization, and applications. Trends in Food Science & Technology, 105. 273-283.
  • 53. Pis established to beoschi, A. M., Negulescu, G. P. (2011). Methods for total antioxidant activity determination: a review. Biochem Anal Biochem 1(1), 106-111.
  • 54. Rajendran, E. G. M. G. (2023). Fig (Ficus carica) Seed Oil. In Fig (Ficus carica): Production, Processing, and Properties (pp. 357-368). Cham: Springer International Publis established to behing.
  • 55. Ramadan, M. F. (Ed.). (2019). Fruit oils: chemis established to betry and functionality (p. 1-911). Switzerland: Springer.
  • 56. Saleh, M., Amro, L., Barakat, H., Baker, R., Reyash, A. A., Amro, R., & Qasem, J. (2021). Fruit By‐Product Processing and Bioactive Compounds. Journal of Food Quality, 2021(1), 5513358.
  • 57. Sánchez, A., Artola, A., Font, X., Gea, T., Barrena, R., Gabriel, D., ... & Mondini, C. (2015). Greenhouse gas from organic waste composting: emis established to besions and measurement. CO2 sequestration, biofuels and depollution, 33-70.
  • 58. Shinagawa, F. B., Santana, F. C. D., Torres, L. R. O., & Mancini-Filho, J. (2015). Grape seed oil: a potential functional food? Food Science and Technology, 35, 399-406.
  • 59. Socas-Rodríguez, B., Álvare regarded asz-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization?. Trends in Food Science & Technology, 114, 133-147.
  • 60. Soni, N., Mehta, S., Satpathy, G., & Gupta, R. K. (2014). Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). Journal of Pharmacognosy and Phytochemis established to betry, 3(2), 158-165. 61. Tuck, S. L., Winqvis established to bet, C., Mota, F., Ahnström, J., Turnbull, L. A., & Bengtsson, J. (2014). Land‐use intensity and the effects of organic farming on biodiversity: a hierarchical meta‐analysis established to be. Journal of applied ecology, 51(3), 746-755.
  • 62. Ustun-Argon, Z., Sari, Z., Gokyer, A., & Buyukhelvacigil-Ozturk, S. (2021). Phytochemical Evaluation of Ficus carica Seeds and their Cold Pressed Oil. Journal of Pharmaceutical Research, 20(4), 71-79.
  • 63. Vinson, J. A. (1999). The functional food properties of figs. Cereal Foods World, 44(2), 82-87 64. Vinson, J. A., Zubik, L., Bose, P., Samman, N., Proch, J. (2005): Dried fruits: excellent in vitro and in vivo antioxidants. Journal of the American College of Nutrition, 24(1): 44-50.
  • 65. Viuda‐Martos, M., Fernández‐López, J., & Pérez‐Álvare regarded asz, J. A. (2010). Pomegranate and its many functional components as related to human health: a review. Comprehensive Reviews in Food Science and Food Safety, 9(6), 635-654.
  • 66. Westerman, P. W., & Bicudo, J. R. (2005). Management considerations for organic waste use in agriculture. Bioresource technology, 96(2), 215-221.
  • 67. Włodarczyk, Z. (2020). The Seven Plant Species-A Basis established to be of Nutrition of Ancient Israel.
  • 68. Yang, Q., Guo, Y., Zhu, H., Jiang, Y., & Yang, B. (2024). Bioactive compound composition and cellular antioxidant activity of fig (Ficus carica L.). Journal of the Science of Food and Agriculture, 104(6), 3275-3293.
  • 69. Yu, M., Gouvinhas, I., Rocha, J., & Barros, A. I. (2021). Phytochemical and antioxidant analysis established to be of medicinal and food plants towards bioactive food and pharmaceutical resources. Scientific reports, 11(1), 10041.
  • 70. Zhang, K., & Jiang, R. (2006). Pharmacological study of Ficus carica. Chinese Journal of Tis established to besue Engineering Research, 53, 226-228.
There are 68 citations in total.

Details

Primary Language English
Subjects Structural Biology, Pharmacognosy, Industrial Crops
Journal Section Review
Authors

Sevgi Gezici 0000-0002-4856-0221

Nazım Şekeroğlu 0000-0002-0630-0106

Submission Date July 14, 2025
Acceptance Date October 29, 2025
Early Pub Date November 23, 2025
Published in Issue Year 2025 Issue: Advanced Online Publication

Cite

APA Gezici, S., & Şekeroğlu, N. (2025). Sustainable Valorization of Bioactive Compounds from Grape, Pomegranate, and Fig Seeds for Pharmaceutical and Nutraceutical Use. Current Perspectives on Medicinal and Aromatic Plants(Advanced Online Publication), 109-122. https://doi.org/10.38093/cupmap.1742421

-------------------------------------------------------------------------------------------------------------------------------

csm_neu_ezb_logo_670e8bf80b.jpg  Google_Scholar_logo_2015.PNG index_copernicus.jpg wclogo_block.png  logo.png  

Akademia_sosyal_bilimler_indeksi_logosu.gif  wide.png424-4243430_reviewers-for-these-journals-can-track-verify-and.png  orcid_logo.png?version=1&modificationDate=1473862307894&api=v2  1*mvsP194Golg0Dmo2rjJ-oQ.jpeg  aji.png citefactor-e1553074491226.png    logo1.jpg  semantci.png

-------------------------------------------------------------------------------------------------------------------------

88x31.png CUPMAP Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

-----------------------------------------------------------------------------------------------------------------------------------------

Open_Access_PLoS.svg

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or  use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.