Araştırma Makalesi
BibTex RIS Kaynak Göster

Eş Zamanlı Veri Transferi ile Lcr-Metre ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi

Yıl 2023, , 1794 - 1809, 24.10.2023
https://doi.org/10.29130/dubited.1171603

Öz

Organik elektronik alanında üretilen yarıiletken aygıtlar yüksek elektrik alanlar altında tetiklenmektedir ve bu tür aygıtların dielektrik analizini 100-200 V'luk gerilim altında yapan cihazlar piyasada bulunmamaktadır. Bu problemi çözebilmek için yüksek gerilim altında dielektrik analiz yapabilen niteliklere sahip bir ölçüm sistemi geliştirilmiştir. Bunun için geniş bir frekans aralığında birkaç voltluk AC uygulayarak dielektrik spektroskopi analizi yapan cihaza, harici bir DC gerilim kaynağı uygun bir şekilde bağlandı. Bu iki cihazın eşzamanlı çalışması gerekmektedir fakat bu işlemin bağımsız iki cihaz için manuel olarak yapılması oldukça zordur. Bu çalışmada, geliştirdiğimiz eş zamanlı veri transfer programı kullanılarak DC gerilim kaynağı (yarıiletken malzemeler veya aygıtların Akım-Gerilim (I-V) özelliklerinin belirlenmesinde kullanılan) ve LCR Metre cihazının (Kapasitans-Gerilim (C-V), Kapasitans-Frekans (C-f), Kondüktans-Gerilim (G-V) ve Kondüktans-frekans (G-f) özelliklerinin belirlenmesinde kullanılan) eş zamanlı haberleşebilmesi için program geliştirilmiştir. Eş zamanlı veri transfer program ile elde edilen tüm veriler program arayüzünde oluşturulan Excel dosyasına aktarılarak dielektrik spektroskopik özelliklerine ait bilgiler kayıt edilmektedir. Geliştirilen programın literatürde dielektrik özellikleri daha önceden belirlenmiş malzemeler üzerine yapılan ön çalışmalarda tutarlı ve hassas veriler elde edilebildiği ve yüksek bir performansla çalıştığı gözlenmiştir.

Kaynakça

  • [1] T. J. Kelleners, D. A. Robinson, P. J. Shouse, J. E. Ayars ve T. H. Skaggs, “Frequency dependence of the complex permittivity and its impact on dielectric sensor calibration in soils,” Soil Science Society of America Journal, c. 69, s. 1, ss. 67–76, 2005.
  • [2] T. Zhang, C. Zhang, H. Yuan ve M. Xu, “Dielectric and ferroelectric properties of Nd3Fe5O12,” Solid State Communications, c. 305, ss. 113766, 2020.
  • [3] M. H. Abdullah ve A. N. Yusoff, “Frequency dependence of the complex impedances and dielectric behaviour of some Mg-Zn ferrites,” Journal of Materials Science, c. 32, s. 21, ss. 5817–5823, 1997.
  • [4] G. E. Demir ve İ. Yücedağ, “Determination of main electrical parameters of Au-4H-n-SiC (MS) and Au-Al2O3-4H-n-SiC (MIS) devices,” Surface Review and Letters, c. 28, s. 5, ss. 1–10, 2021.
  • [5] S. K. Patri, R. N. P. Choudhary ve B. K. Samantaray, “Studies of structural, dielectric and impedance properties of Bi9Fe5Ti3O27 ceramics,” Journal of Electroceramics, c. 20, s. 2, ss. 119–126, 2008.
  • [6] Y. Karakuş, M. Okutan, A. Kösemen, S. E. San, Z. Alpaslan ve A. Demir, “Electrical properties of Zn-phthalocyanine and poly (3-hexylthiophene) doped nematic liquid crystal,” Journal of Nanomaterials, c. 2011, ss. 1-5, 2011.
  • [7] S. Yıldırım, “Sol-gel döner kaplama yöntemiyle oluşturulmuş Ta2O5 ince film kondansatörün düşük sıcaklık bölgesi dielektrik özellikleri ve ac iletkenlik davranışı,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, c. 6, s. 4, ss. 851–861, 2018.
  • [8] V. K. Abrahamyan, N. H. Hakobyan, V. M. Aroutiounian, V. G. Babajanyan, H. L. Margaryan, D. L. Hovhannisyan, A. T. Poghosyan ve D. K. Pokhsraryan “Investigation of characteristics of electrically-controlled liquid-crystal retarders,” Journal of Contemporary Physics (Armenian Academy of Sciences), c. 44, s. 2, ss. 84–90, 2009.
  • [9] M. Demirtaş ve G. Gezer, “PI denetleyicili DC/DC dönüştürücü çıkış geriliminin labview kullanılarak incelenmesi analyzing of PI controlled DC/DC converter output voltage using labview,” IEEE 18.Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Diyarbakır, Türkiye, 2010, ss. 704–707.
  • [10] S. Şahin, M. Bayraktar, A. E. Kavur ve K. E. Şahin, “Arduino ve labview kullanarak emg verilerinden eşik seviye belirleme ile motor kontrol düzeneği tasarımı,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, s. 2, ss. 736–739, 2018.
  • [11] G. Luo, C. Song, P. Hongjie, Z. Li, W. Xu, G.S.V. Raghavan, H. Chen ve G. Jin, “Optimization of the microwave drying process for potato chips based on the measurement of dielectric properties,” Drying Technology, c. 37, s. 11, ss. 1329–1339, 2019.
  • [12] M. Jin, “Labview-based fuzzy controller design of a lighting control labview-based fuzzy controller design of a lighting control system,” Journal of Marine Science and Technology, c. 17, s. 2, ss. 116-121, 2009.
  • [13] A. Sakaamini, M. Harvey, A. J. Murray, A. Sakaamini, M. Harvey ve A. James, “An experimental control system for electron spectrometers using arduino and labview interfaces,” The Review of Scientific Instruments, c. 91, s. 10, ss. 103104, 2020.
  • [14] V. A. Polyansky ve I. L. Pankrat, “On ionization of electronically excited molecules in hydrocarbon combustion under strong electric field,” Journal of Electrostatics, c. 70, s. 2, ss. 201–206, 2012.
  • [15] A. Tazzoli, G. Meneghesso, F. Zanon, F. Danesin, E. Zanoni, P. Bove, R. Langer ve J. Thorpe, “Microelectronics reliability electrical characterization and reliability study of HEMTs on composite substrates under high electric fields,” Microelectronics Reliability, c. 48, s. 8-9, ss. 1370–1374, 2008.
  • [16] J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong, X. Zhu, H. Jiang, X. Zhang, Z. Xiang ve W. Lu, “Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption,” Chemical Engineering Journal, c. 431, s. 3, ss. 134284, 2022.
  • [17] A. Ashery, H. Shaban, S. A. Gad ve B. A. Mansour, “Materials science in semiconductor processing investigation of electrical and capacitance-voltage characteristics of GO/TiO2/n-Si MOS device,” Materials Science in Semiconductor Processing, c. 114, ss. 105070, 2020.
  • [18] A. Ashery, M. M. M. Elnasharty ve I. M. El Radaf, “Current transport and dielectric analysis of Ni/SiO2/P-Si diode prepared by liquid phase epitaxy,” Silicon, c. 14, ss. 153–163, 2022.
  • [19] A. Demir, S. Bağcı, S. E. San ve Z. Doğruyol, “Pentacene-based organic thin film transistor with SiO2 gate dielectric,” Surface Review and Letters, c. 22, s. 2, ss. 1550038, 2015.
  • [20] İ. Yücedağ, A. Kaya, Ş. Altındal ve İ. Uslu, “Electrical and dielectric properties and intersection behavior of G/ω-V plots for Al/Co-PVA/p-Si (MPS) structures at temperatures below room temperature,” Journal of the Korean Physical Society, c. 65, s. 12, ss. 2082–2089, 2014.
  • [21] G. Ersöz, İ. Yücedağ, S. Bayrakdar, Ş. Altındal ve A. Gümüş, “Investigation of photo-induced effect on electrical properties of Au/PPy/n-Si (MPS) type schottky barrier diodes,” Journal of Materials Science: Materials in Electronics, c. 28, s. 9, ss. 6413–6420, 2017.
  • [22] N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, G. Ersöz, İ. Orak, Ş. Altındal, B. Akbari ve H. Akbari “Electric and dielectric properties of Au/ZnS-PVA/n-Si (MPS) structures in the frequency range of 10-200 kHz,” Journal of Electronic Materials, c. 46, s. 7, ss. 4276–4286, 2017.
  • [23] H. Liu, M. Zhang, Y. Ye, J. Yi, Y. Zhang ve Q. Liu, “Porous cobalt ferrite microspheres decorated two-dimensional MoS2 as an efficient and wideband microwave absorber,” Journal of Alloys and Compounds, c. 892, ss. 162126, 2021.
  • [24] A. Huang, F. Liu, Z. Cui, H. Wang, X. Song, L. Geng, H. Wang ve X. Peng, “Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering,” Composites Science and Technology, c. 214, ss. 108980, 2021.
  • [25] İ. Yücedaǧ, A. Kaya ve Ş. Altındal, “On the frequency dependent negative dielectric constant behavior in Al/Co-doped (PVC + TCNQ)/p-Si structures,” International Journal of Modern Physics B, c. 28, s. 23, ss. 1–15, 2014.
  • [26] A. Gümüş, G. Ersöz, İ. Yücedağ, S. Bayrakdar ve Ş. Altındal, “Comparative study of the temperature-dependent dielectric properties of Au/PPy/n-Si (MPS)-type schottky barrier diodes,” Journal of the Korean Physical Society, c. 67, s. 5, ss. 889–895, 2015.
  • [27] A. R. Noviyanti, Y. T. Malik, I. Rahayu, D. R. Eddy ve U. Pratomo, “Electrochemical properties of La9.33Si6O26(LSO)–La0.8Sr0.2Ga0.8Mg0.2O2.55(LSGM) electrolyte over NiO and La0.1Ca0.9MnO3(LCM) electrodes,” Materials Research Express, c. 8, ss. 115505, 2021.
  • [28] D. Rubi, F. G. Marlasca, M. Reinoso, P. Bonville ve P. Levy, “Magnetism and electrode dependant resistive switching in Ca-doped ceramic bismuth ferrite,” Materials Science and Engineering: B, c. 177, s. 6, ss. 471–475, 2012.
  • [29] W. Wu, X. Liu, Z. Qiang, J. Yang, Y. Liu, K. Huai, B. Zhang, S. Jin, Y. Xia, K. K. Fu, J. Zhang ve Y. Chen, “Inserting insulating barriers into conductive particle channels: A new paradigm for fabricating polymer composites with high dielectric permittivity and low dielectric loss,” Composites Science and Technology, c. 216, ss. 109070, 2021.
  • [30] S. A. Yerişkin, G. E. Demir ve İ. Yücedağ, “ On the frequency-voltage dependence profile of complex dielectric, complex electric modulus and electrical conductivity in Al/ZnO/p-GaAs type structure at room temperature,” Journal of Nanoelectronics and Optoelectronics, c. 14, s. 8, ss. 1126–1132, 2019.
  • [31] Y. Azizian-Kalandaragh, İ. Yücedağ, G. E. Demir ve Ş. Altındal, “Investigation of the variation of dielectric properties by applying frequency and voltage to Al/(CdS-PVA)/p-Si structures,” Journal of Molecular Structure, c. 1224, ss. 29325, 2021.
  • [32] B. Gowtham, V. Balasubramani, S. Ramanathan, M. Ubaidullah, S. F. Shaikh ve G. Sreedevi, “Dielectric relaxation, electrical conductivity measurements, electric modulus and impedance analysis of WO3 nanostructures,” Journal of Alloys and Compounds, c. 888, ss. 161490, 2021.
  • [33] S. Karadaş, S. A. Yerişkin, M. Balbaşı ve Y. Azizian-kalandaragh, “Complex dielectric, complex electric modulus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures,” Journal of Physics and Chemistry of Solids, c. 148, ss. 109740, 2021.
  • [34] I. K. Er, A. O. Çağırtekin, M. Artuç ve S. Acar, “Synthesis of Al/HfO2/p-Si schottky diodes and the investigation of their electrical and dielectric properties,” Journal of Materials Science: Materials in Electronics, c. 32, ss. 1677–1690, 2021.

Developing A Novel Method for The Characterization of Semiconductor Devices by Provading Synchronous Operation of Lcr-Meters and Direct Current Sources by Using Real-Time Data Acquisition

Yıl 2023, , 1794 - 1809, 24.10.2023
https://doi.org/10.29130/dubited.1171603

Öz

Semiconductor devices produced in the field of organic electronics are triggered under high electric fields, and since such studies are new in the literature, devices that perform dielectric analysis under voltage of 100-200 V are not available in the market. In order to solve this problem, a measurement system with such characteristics was developed. For this purpose, an external DC voltage source was conveniently connected to the device that performs dielectric spectroscopy analysis by applying a few volts of AC over a wide frequency range. These two devices need to be perfectly synchronized, but it is very difficult to do this manually for two independent devices. In this study, a program that enables simultaneous communication between the DC voltage source (used in the determination of the Current-Voltage (I-V) properties of semiconductor materials and devices) and the LCR Meter device (used to determine the basic properties such as Capacitance-Voltage (C-V), Capacitance-Frequency (C-f), Conductance-Voltage (G-V), and Conductance-frequency (G-f)) was developed using real-time data acquisition program. All data obtained with the program can be transferred to the Excel file created in the program interface, and information on dielectric spectroscopic properties can be recorded. It was observed that the developed program was able to obtain consistent and sensitive data in preliminary studies on materials whose dielectric properties were previously determined in the literature, and that it worked with a high performance.

Kaynakça

  • [1] T. J. Kelleners, D. A. Robinson, P. J. Shouse, J. E. Ayars ve T. H. Skaggs, “Frequency dependence of the complex permittivity and its impact on dielectric sensor calibration in soils,” Soil Science Society of America Journal, c. 69, s. 1, ss. 67–76, 2005.
  • [2] T. Zhang, C. Zhang, H. Yuan ve M. Xu, “Dielectric and ferroelectric properties of Nd3Fe5O12,” Solid State Communications, c. 305, ss. 113766, 2020.
  • [3] M. H. Abdullah ve A. N. Yusoff, “Frequency dependence of the complex impedances and dielectric behaviour of some Mg-Zn ferrites,” Journal of Materials Science, c. 32, s. 21, ss. 5817–5823, 1997.
  • [4] G. E. Demir ve İ. Yücedağ, “Determination of main electrical parameters of Au-4H-n-SiC (MS) and Au-Al2O3-4H-n-SiC (MIS) devices,” Surface Review and Letters, c. 28, s. 5, ss. 1–10, 2021.
  • [5] S. K. Patri, R. N. P. Choudhary ve B. K. Samantaray, “Studies of structural, dielectric and impedance properties of Bi9Fe5Ti3O27 ceramics,” Journal of Electroceramics, c. 20, s. 2, ss. 119–126, 2008.
  • [6] Y. Karakuş, M. Okutan, A. Kösemen, S. E. San, Z. Alpaslan ve A. Demir, “Electrical properties of Zn-phthalocyanine and poly (3-hexylthiophene) doped nematic liquid crystal,” Journal of Nanomaterials, c. 2011, ss. 1-5, 2011.
  • [7] S. Yıldırım, “Sol-gel döner kaplama yöntemiyle oluşturulmuş Ta2O5 ince film kondansatörün düşük sıcaklık bölgesi dielektrik özellikleri ve ac iletkenlik davranışı,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, c. 6, s. 4, ss. 851–861, 2018.
  • [8] V. K. Abrahamyan, N. H. Hakobyan, V. M. Aroutiounian, V. G. Babajanyan, H. L. Margaryan, D. L. Hovhannisyan, A. T. Poghosyan ve D. K. Pokhsraryan “Investigation of characteristics of electrically-controlled liquid-crystal retarders,” Journal of Contemporary Physics (Armenian Academy of Sciences), c. 44, s. 2, ss. 84–90, 2009.
  • [9] M. Demirtaş ve G. Gezer, “PI denetleyicili DC/DC dönüştürücü çıkış geriliminin labview kullanılarak incelenmesi analyzing of PI controlled DC/DC converter output voltage using labview,” IEEE 18.Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Diyarbakır, Türkiye, 2010, ss. 704–707.
  • [10] S. Şahin, M. Bayraktar, A. E. Kavur ve K. E. Şahin, “Arduino ve labview kullanarak emg verilerinden eşik seviye belirleme ile motor kontrol düzeneği tasarımı,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, s. 2, ss. 736–739, 2018.
  • [11] G. Luo, C. Song, P. Hongjie, Z. Li, W. Xu, G.S.V. Raghavan, H. Chen ve G. Jin, “Optimization of the microwave drying process for potato chips based on the measurement of dielectric properties,” Drying Technology, c. 37, s. 11, ss. 1329–1339, 2019.
  • [12] M. Jin, “Labview-based fuzzy controller design of a lighting control labview-based fuzzy controller design of a lighting control system,” Journal of Marine Science and Technology, c. 17, s. 2, ss. 116-121, 2009.
  • [13] A. Sakaamini, M. Harvey, A. J. Murray, A. Sakaamini, M. Harvey ve A. James, “An experimental control system for electron spectrometers using arduino and labview interfaces,” The Review of Scientific Instruments, c. 91, s. 10, ss. 103104, 2020.
  • [14] V. A. Polyansky ve I. L. Pankrat, “On ionization of electronically excited molecules in hydrocarbon combustion under strong electric field,” Journal of Electrostatics, c. 70, s. 2, ss. 201–206, 2012.
  • [15] A. Tazzoli, G. Meneghesso, F. Zanon, F. Danesin, E. Zanoni, P. Bove, R. Langer ve J. Thorpe, “Microelectronics reliability electrical characterization and reliability study of HEMTs on composite substrates under high electric fields,” Microelectronics Reliability, c. 48, s. 8-9, ss. 1370–1374, 2008.
  • [16] J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong, X. Zhu, H. Jiang, X. Zhang, Z. Xiang ve W. Lu, “Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption,” Chemical Engineering Journal, c. 431, s. 3, ss. 134284, 2022.
  • [17] A. Ashery, H. Shaban, S. A. Gad ve B. A. Mansour, “Materials science in semiconductor processing investigation of electrical and capacitance-voltage characteristics of GO/TiO2/n-Si MOS device,” Materials Science in Semiconductor Processing, c. 114, ss. 105070, 2020.
  • [18] A. Ashery, M. M. M. Elnasharty ve I. M. El Radaf, “Current transport and dielectric analysis of Ni/SiO2/P-Si diode prepared by liquid phase epitaxy,” Silicon, c. 14, ss. 153–163, 2022.
  • [19] A. Demir, S. Bağcı, S. E. San ve Z. Doğruyol, “Pentacene-based organic thin film transistor with SiO2 gate dielectric,” Surface Review and Letters, c. 22, s. 2, ss. 1550038, 2015.
  • [20] İ. Yücedağ, A. Kaya, Ş. Altındal ve İ. Uslu, “Electrical and dielectric properties and intersection behavior of G/ω-V plots for Al/Co-PVA/p-Si (MPS) structures at temperatures below room temperature,” Journal of the Korean Physical Society, c. 65, s. 12, ss. 2082–2089, 2014.
  • [21] G. Ersöz, İ. Yücedağ, S. Bayrakdar, Ş. Altındal ve A. Gümüş, “Investigation of photo-induced effect on electrical properties of Au/PPy/n-Si (MPS) type schottky barrier diodes,” Journal of Materials Science: Materials in Electronics, c. 28, s. 9, ss. 6413–6420, 2017.
  • [22] N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, G. Ersöz, İ. Orak, Ş. Altındal, B. Akbari ve H. Akbari “Electric and dielectric properties of Au/ZnS-PVA/n-Si (MPS) structures in the frequency range of 10-200 kHz,” Journal of Electronic Materials, c. 46, s. 7, ss. 4276–4286, 2017.
  • [23] H. Liu, M. Zhang, Y. Ye, J. Yi, Y. Zhang ve Q. Liu, “Porous cobalt ferrite microspheres decorated two-dimensional MoS2 as an efficient and wideband microwave absorber,” Journal of Alloys and Compounds, c. 892, ss. 162126, 2021.
  • [24] A. Huang, F. Liu, Z. Cui, H. Wang, X. Song, L. Geng, H. Wang ve X. Peng, “Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering,” Composites Science and Technology, c. 214, ss. 108980, 2021.
  • [25] İ. Yücedaǧ, A. Kaya ve Ş. Altındal, “On the frequency dependent negative dielectric constant behavior in Al/Co-doped (PVC + TCNQ)/p-Si structures,” International Journal of Modern Physics B, c. 28, s. 23, ss. 1–15, 2014.
  • [26] A. Gümüş, G. Ersöz, İ. Yücedağ, S. Bayrakdar ve Ş. Altındal, “Comparative study of the temperature-dependent dielectric properties of Au/PPy/n-Si (MPS)-type schottky barrier diodes,” Journal of the Korean Physical Society, c. 67, s. 5, ss. 889–895, 2015.
  • [27] A. R. Noviyanti, Y. T. Malik, I. Rahayu, D. R. Eddy ve U. Pratomo, “Electrochemical properties of La9.33Si6O26(LSO)–La0.8Sr0.2Ga0.8Mg0.2O2.55(LSGM) electrolyte over NiO and La0.1Ca0.9MnO3(LCM) electrodes,” Materials Research Express, c. 8, ss. 115505, 2021.
  • [28] D. Rubi, F. G. Marlasca, M. Reinoso, P. Bonville ve P. Levy, “Magnetism and electrode dependant resistive switching in Ca-doped ceramic bismuth ferrite,” Materials Science and Engineering: B, c. 177, s. 6, ss. 471–475, 2012.
  • [29] W. Wu, X. Liu, Z. Qiang, J. Yang, Y. Liu, K. Huai, B. Zhang, S. Jin, Y. Xia, K. K. Fu, J. Zhang ve Y. Chen, “Inserting insulating barriers into conductive particle channels: A new paradigm for fabricating polymer composites with high dielectric permittivity and low dielectric loss,” Composites Science and Technology, c. 216, ss. 109070, 2021.
  • [30] S. A. Yerişkin, G. E. Demir ve İ. Yücedağ, “ On the frequency-voltage dependence profile of complex dielectric, complex electric modulus and electrical conductivity in Al/ZnO/p-GaAs type structure at room temperature,” Journal of Nanoelectronics and Optoelectronics, c. 14, s. 8, ss. 1126–1132, 2019.
  • [31] Y. Azizian-Kalandaragh, İ. Yücedağ, G. E. Demir ve Ş. Altındal, “Investigation of the variation of dielectric properties by applying frequency and voltage to Al/(CdS-PVA)/p-Si structures,” Journal of Molecular Structure, c. 1224, ss. 29325, 2021.
  • [32] B. Gowtham, V. Balasubramani, S. Ramanathan, M. Ubaidullah, S. F. Shaikh ve G. Sreedevi, “Dielectric relaxation, electrical conductivity measurements, electric modulus and impedance analysis of WO3 nanostructures,” Journal of Alloys and Compounds, c. 888, ss. 161490, 2021.
  • [33] S. Karadaş, S. A. Yerişkin, M. Balbaşı ve Y. Azizian-kalandaragh, “Complex dielectric, complex electric modulus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures,” Journal of Physics and Chemistry of Solids, c. 148, ss. 109740, 2021.
  • [34] I. K. Er, A. O. Çağırtekin, M. Artuç ve S. Acar, “Synthesis of Al/HfO2/p-Si schottky diodes and the investigation of their electrical and dielectric properties,” Journal of Materials Science: Materials in Electronics, c. 32, ss. 1677–1690, 2021.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gülçin Ersöz Demir 0000-0003-2636-3291

İbrahim Yücedağ 0000-0003-2975-7392

Ercan Şahin 0000-0002-0522-7664

Yakup Bakış 0000-0002-0395-8375

Yayımlanma Tarihi 24 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Ersöz Demir, G., Yücedağ, İ., Şahin, E., Bakış, Y. (2023). Eş Zamanlı Veri Transferi ile Lcr-Metre ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi. Duzce University Journal of Science and Technology, 11(4), 1794-1809. https://doi.org/10.29130/dubited.1171603
AMA Ersöz Demir G, Yücedağ İ, Şahin E, Bakış Y. Eş Zamanlı Veri Transferi ile Lcr-Metre ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi. DÜBİTED. Ekim 2023;11(4):1794-1809. doi:10.29130/dubited.1171603
Chicago Ersöz Demir, Gülçin, İbrahim Yücedağ, Ercan Şahin, ve Yakup Bakış. “Eş Zamanlı Veri Transferi Ile Lcr-Metre Ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi”. Duzce University Journal of Science and Technology 11, sy. 4 (Ekim 2023): 1794-1809. https://doi.org/10.29130/dubited.1171603.
EndNote Ersöz Demir G, Yücedağ İ, Şahin E, Bakış Y (01 Ekim 2023) Eş Zamanlı Veri Transferi ile Lcr-Metre ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi. Duzce University Journal of Science and Technology 11 4 1794–1809.
IEEE G. Ersöz Demir, İ. Yücedağ, E. Şahin, ve Y. Bakış, “Eş Zamanlı Veri Transferi ile Lcr-Metre ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi”, DÜBİTED, c. 11, sy. 4, ss. 1794–1809, 2023, doi: 10.29130/dubited.1171603.
ISNAD Ersöz Demir, Gülçin vd. “Eş Zamanlı Veri Transferi Ile Lcr-Metre Ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi”. Duzce University Journal of Science and Technology 11/4 (Ekim 2023), 1794-1809. https://doi.org/10.29130/dubited.1171603.
JAMA Ersöz Demir G, Yücedağ İ, Şahin E, Bakış Y. Eş Zamanlı Veri Transferi ile Lcr-Metre ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi. DÜBİTED. 2023;11:1794–1809.
MLA Ersöz Demir, Gülçin vd. “Eş Zamanlı Veri Transferi Ile Lcr-Metre Ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi”. Duzce University Journal of Science and Technology, c. 11, sy. 4, 2023, ss. 1794-09, doi:10.29130/dubited.1171603.
Vancouver Ersöz Demir G, Yücedağ İ, Şahin E, Bakış Y. Eş Zamanlı Veri Transferi ile Lcr-Metre ve Doğru Akım Kaynaklarının Senkron Çalıştırılması Sağlanarak Yarıiletken Cihazların Karakterizasyonunda Yeni Yöntem Geliştirilmesi. DÜBİTED. 2023;11(4):1794-809.