Araştırma Makalesi
BibTex RIS Kaynak Göster

Alternaria brassicicola’ya karşı Trans-cinnamic Asit ve Xenorhabdus szentirmaii’nin Antifungal Metabolitlerinin Kullanım Potansiyellerinin Araştırılması

Yıl 2024, , 365 - 374, 26.01.2024
https://doi.org/10.29130/dubited.1233579

Öz

Bu çalışmada trans-cinnamik (TCA) ve Xeorhabdus szentirmaii bakteri süpernatatının (CFS) kara leke hastalığı etmeni Alternaria brassicicola’ya karşı antifungal etkinliği test edilmiştir. Sonuçlara bakıldığında TCA, X szentirmaii’nin süpernatantına göre A. brassicicola üzerinde daha etkili olmuştur. Petri deneylerinde A. brassicicola’nın sporlarının çimlenmesini en fazla baskılayan deney grubunun TCA olduğu görülmüştür. Ayrıca TCA’nın tüm konsantrasyonlarının (%0.25, %0.50, %1, %2) hiçbirisinde çim borusu gelişimini gözlenmemiştir. A. brassicicola’nın misel gelişimini en fazla inhibe eden (%100 ve %92 oranlarında) TCA konsantrasyonları ise sırasıyla yüzde 2 ve yüzde 1’dir. A. brassicicola’nın hastalık şiddeti üzerine TCA’nın koruyucu ve tedavi edici etkisi brokoli fideleri kullanılarak test edilmiştir. Tedavi edici denemelerde, hastalık şiddeti kotrolde %71 iken TCA (1%) ve TCA (2%) uygulanan brokoli fidelerinde sırasıyla %56.33 ve %54.03 olarak ölçülmüştür. Ancak koruyucu etki denemelerinde TCA(2%), TCA (1%)’e göre hastalık şiddetini daha etkili bir şekilde baskılamıştır. Brokoli fidelerinde gözlemlenen hastalık şiddeti TCA (2%) ve TCA (1%) için sırasıyla %17.37 ve %25.21 olarak ölçülmüştür. TCA’nın A. brassicicola’ya etkinlik denemelerinde ise TCA (1%) ve TCA (2%) arasında tedavi edicilik bakımından fark görülmemiştir. Yüzde etki değerleri TCA (1%) ve TCA (2%) için sırasıyla %20.57 ve %23.02 olarak hesaplanmıştır. Bununla beraber TCA (2%), TCA (1%)’e göre koruyucu etki bakımından istatiksel açıdan daha yüksek bir etkinlik sergilemiştir. Bu çalışma TCA’nın A. brassicicola’ya mükemmel bir kullanım potansiyeli olduğunu ortaya koymaktadır ve sentetik fungusitlere iyi bir alternatif olabileceğini göstermektedir.

Kaynakça

  • [1] A. Czajka, A. Czubatka, J. Sobolewski, J. Robak, “First report of Alternaria leaf spot caused by Alternaria alternate on spinach in Poland,” Plant Disease, vol. 99 issue 5, pp. 729–729, 2015. https://doi.org/10.1094/PDIS-10-14-1090-PD
  • [2] M. Nowicki, M. Nowakowska, A. Niezgoda, E. U. Kozik, “Alternaria black spot of crucifers: symptoms, important of disease, and perspectives of resistance breeding,” Vegetable Crops Research Bulletin, vol. 76, pp. 5–19, 2012. https://doi.org/10.2478/v10032-012-0001-6
  • [3] J. Kohl, C. A. M. van Tongeren, B. H. Groenenboom-de Haas, R. A. van Hoof, R. Driessen, L. van der Heijden, “Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae in organic seed production of cauliflower,” Plant Pathology, vol. 59, pp. 358–367, 2010. https://doi.org/10.1111/j.1365-3059.2009.02216.x
  • [4] T. Dethoup, P. Songkumarn, S. Rueangrit, S. Suesa-ard, C. Kaewkrajay, “Fungicidal activity of Thai medicinal plant extracts against Alternaria brassicicola causing black spot of Chinese kale,” European Journal of Plant Pathology, vol. 152, pp. 157–167, 2018. https://doi.org/10.1007/s10658-018-1460-5 [5] A. Jantasorn, J. Mongon, T. Ouiphisittraiwat, “In vivo antifungal activity of five plant extracts against Chinese kale leaf spot caused by Alternaria brassicicola,” Journal of Biopesticides, vol. 10, issue 1, pp. 43–49, 2017.
  • [6] D. Kumar, N. Maurya, Y. K. Bharti, A. Kumar, K. Kumar, K. Srivastava, G. Chand, C. Kushwaha, S. K. Singh, R. K. Mishra, A. Kumar, “Alternaria blight of oilseed brassicas: a comprehensive review,” African Journal of Microbiology Research, vol. 8, pp. 2816–2829, 2014. https://doi.org/10.5897/AJMR2013.6434
  • [7] T. Amein, S. A. Wright, M. Wikstrom, E. Koch, A. Schmitt, D. Stephan, M. Jahn, F. Tinivella, M. L. Gullino, G. Forsberg, S. Werner, J. Wolf, S. P. C. Groot, “Evaluation of non-chemical seed treatment methods for control Alternaria brassicicola on cabbage seeds,” Journal of Plant Disease and Protection, vol. 118, pp. 214–221, 2011. https://doi.org/10.1007/BF03356406
  • [8] J. P. Zubrod, M. Bundschuh, G. Arts, C. A. Brühl, G. Imfeld, A. Knäbel, S. Payraudeau, J. J. Rasmussen, J. Rohr, A. Scharmüller, K. Smalling, S. Stehle, R. Schulz, R. B. Schäfer, “Fungicides: An Overlooked Pesticide Class?” Environmental Science & Technology, vol. 53, issue 7, pp. 3347–3365, 2019. https://doi.org/10.1021/acs.est.8b04392
  • [9] N. E. Boemare and R. J. Akhurst, “The Genera Photorhabdus and Xenorhabdus,” in The Prokaryotes, New York, USA: Springer, 2006, pp. 451–494.
  • [10] B. Gulcu, H. Cimen, K. R. Ramalingam, S. Hazir, “Entomopathogenic Nematodes and their Mutualistic Bacteria: Their Ecology and Application as Microbial Control Agents,” Biopesticide International, vol. 13 issue 2, pp. 1-31, 2017.
  • [11] C. H. Bock, D. I. Shapiro-Ilan, D. Wedge, C. H. Cantrell, “Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide,” Journal of Pest Science, vol. 87, pp. 155–162, 2014. https://doi.org/10.1007/s10340-013-0519-5
  • [12] H. B., Bode, “Entomopathogenic bacteria as a source of secondary metabolites,” Current Opinion in Chemical Biology, vol. 13, pp. 1–7, 2009. https://doi.org/10.1016/j.cbpa.2009.02.037
  • [13] A. O. Brachmann, S. Forst, G. M. Furgani, A. Fodor, H. B. Bode, “Xenofuranones a and B: phenylpyruvate dimers from Xenorhabdus szentirmaii,” Journal of Natural Products, vol. 69, pp. 1830–1832, 2006. https://doi.org/10.1021/np060409n
  • [14] S. W. Fuchs, F. Grundmann, M. Kurz, M. Kaiser, H. B. Bode, “Fabclavines: Bioactive Peptide–Polyketide-Polyamino Hybrids from Xenorhabdus,” ChemBioChem, vol. 15, pp. 512–516, 2014. https://doi.org/10.1002/cbic.201300802
  • [15] M. Gualtieri, A. Aumelas, J. O. Thaler, “Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila,” The Journal of Antibiotics, vol. 62, pp. 295–302, 2009. https://doi.org/10.1038/ja.2009.31
  • [16] D. Ji, Y. Yi, G-H Kang, Y-H Choi, P. Kim, N-L Baek, Y. Kim, “Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria,” FEMS Microbiology Letters, vol. 239, pp. 241–248, 2004. https://doi.org/10.1016/j.femsle.2004.08.041
  • [17] G. Lang, T. Kalvelage, A. Peters, J. Wiese, J. F. Imhoff, “Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus,” Journal of Natural Products, vol. 71, pp. 1074–1077, 2008. https://doi.org/10.1021/np800053n
  • [18] D. I. Shapiro-Ilan, C. C. Reilly, M. W. Hotchkiss, “Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan,” Archives of Phytopathology and Plant Protection, vol. 42, pp. 715–728, 2009. https://doi.org/10.1080/03235400701390539
  • [19] X. L. Fang, Z. Z. Li, Y. H. Wang, X. Zhang, “In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea,” Journal of Applied Microbiology, vol. 111 issue 1, pp. 145–154, 2011. https://doi.org/10.1111/j.1365-2672.2011.05033.x
  • [20] X. Fang, M. Zhang, Q. Tang, Y. Wang, X. Zhang, “Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta,” Scientific Reports, vol. 4, pp. 1–7, 2014. https://doi.org/10.1038/srep04300 [21] S. Hazir, D. I. Shapiro-Ilan, C. H. Bock, C. Hazir, L. G. Leite, M. W. Hotchkiss, “Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens,” European Journal of Plant Pathology, vol. 146, pp. 369–381, 2016. https://doi.org/10.1007/s10658-016-0923-
  • [22] N. Adlığ, B. Gülcü, “Trans-Cinnamik Asit ve Xenorhabdus szentirmaii Metabolitlerinin Bitki Patojeni Fungus Botrytis cinerea Mücadelesinde Kullanımı,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, pp. 2000-2008, 2019. https://doi.org/10.29130/dubited.588711
  • [23] D. I. Shapiro-Ilan, C. H. Bock, M. W. Hotchkiss, “Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens,” Biological Control, vol. 77, pp. 1–6, 2014. https://doi.org/10.1016/j.biocontrol.2014.05.010
  • [24] A. Komhorn, S. Thongmee, T. Thammakun, T. Oiuphisittraiwat, A. Jantasorn, “In vivo testing of antagonistic fungi against Alternaria brassicicola causing Chinese kale black spot disease,” Journal of Plant Disease and Protection, vol. 128, pp. 183–189, 2021. https://doi.org/10.1007/s41348-020-00382-2
  • [25] N. Hassan, S. Nakasuji, M. M. Elsharkawy, H. A. Naznin, M. Kubota, H. Ketta, M. Shimizu, “Biocontrol Potential of an Endophytic Streptomyces sp. Strain MBCN152-1 against Alternaria brassicicola on Cabbage Plug Seedlings,” Microbes and Environment, vol. 32, issue 2, pp. 133-141, 2017. https://doi.org/10.1264/jsme2.ME17014
  • [26] R. K. Manhas, T. Kaur, “Biocontrol Potential of Streptomyces hydrogenans Strain DH16 toward Alternaria brassicicola to Control Damping Off and Black Leaf Spot of Raphanus sativus,” Frontiers in Plant Science, vol. 7, pp. 1869, 2016. https://doi.org/10.3389/fpls.2016.01869
  • [27] H. R. M. Galal, W. M. Salem, F. N. El-Deen, “Biological control of some pathogenic fungi using marine algae extracts,” Research Journal of Microbiology, vol. 6 issue 8, pp. 645-657, 2011. https://doi.org/10.3923/jm.2011.645.657
  • [30] S. Shan, H. Ma, Y. Li, C. Huang, X. Gu, Z. Jiang, B. Sun, C. Chen, X. Wei, G. Shen, D. I. Shapiro-Ilan, W. Ruan, “Metabolites from symbiotic bacteria of entomopathogenic nematodes have antimicrobial effects against Pythium myriotylum,” European Journal of Plant Pathology, vol. 158, pp. 35-44, 2021. https://doi.org/10.1007/s10658-020-02053-2
  • [31] H. Wang, K. Wen, X. Zhao, X. Wang, A. Li, H. Hong, “The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth promoting effect,” Crop Protection, vol. 28, issue 8, pp. 634–639, 2009. https://doi.org/10.1016/j.cropro.2009.03.017
  • [32] Y. Cho, “How the necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma,” Eukaryotic Cell, vol. 14, pp. 335–344, 2015. https://doi:10.1128/EC.00226-14
  • [33] E. Boszormenyi,T. Ersek, A. Fodor, A. M. Fodor, L. S. Foldes, M. Hevesi, J. S. Hogan, Z. Katona, M. G. Klein, A. Kormany, S. Pekar, A. Szentirmai, F. Sztaricskai, R. A. J. Taylor, “Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae,” Journal of Applied Microbiology, vol. 107, pp. 764–759, 2009. https://doi.org/10.1111/j.1365-2672.2009.04249.x
  • [34] A. Fodor, A. M. Fodor, S. Forst, J. S. Hogan, M. G. Klein, K. Lengyel, G. Saringer, E. Stackebrandt, R. A. J. Taylor, E. Lehoczky, “Comparative analysis of antibacterial activities of Xenorhabdus species on related and nonrelated bacteria in vivo,” Journal of Microbiology and Antimicrobials, vol. 2, pp. 36–46, 2010.
  • [35] S. L. Wenski, D. Kolbert, G. L. C. Grammbitter, H. B. Bode, “Fabclavine biosynthesis in X. szentirmaii: shortened derivatives and characterization of the thioester reductase FclG and the condensation domain-like protein FclL,” Journal of Industrial Microbiology and Biotechnology, vol. 46 issue 3-4, pp. 565–572, 2019. https://doi.org/10.1007/s10295-018-02124-8
  • [36] S. L. Wenski, H. Cimen, N. Berghaus, S.W. Fuchs, S. Hazir, H. B. Bode, “Fabclavine diversity in Xenorhabdus bacteria,” Beilstein Journal of Organic Chemistry, vol. 16, pp. 956–965, 2019. https://doi.org/10.3762/bjoc.16.84

Control potency of Trans-cinnamic acid and antifungal metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola

Yıl 2024, , 365 - 374, 26.01.2024
https://doi.org/10.29130/dubited.1233579

Öz

The, antifungal activities of trans-cinamic acid (TCA) and cell-free supernatant (CFS) of X. szentirmaii were evaluated against Alternaria brassicicola that cause Black spot disease. The results showed that TCA was more suppressive than CFS of X. szentirmaii in the control of A. brassicicola. In petri assays, the highest suppressive effect on spore germination was in TCA treatments compared to CFS of X. szentirmaii. Moreover, no germ tube elongation was observed in any of tested concentrations (0.25%, 0.50%, 1%, 2%) of TCA. The highest level of mycelial growth inhibitions (100% and 92%) were exhibited by TCA (2%) and TCA (1%), respectively. The curative and protective activity of TCA on disease severity of A. brassicicola were also evaluated on broccoli plants. In the curative activity assays, disease severities were 71.00%, 56.33% and 54.03% for control, TCA (1%) and TCA (2%), respectively. Whereas in the protective activity, TCA (2%) suppressed the disease severity significantly greater than TCA (1%). The disease severity of A. brassicicola after TCA application on broccoli plants was 25.21% and 17.37% for TCA (1%) and TCA (2%) respectively. Similar data were obtained in the efficacy of TCA on A. brassicicola. In the curative activity assays, TCA (1%) and TCA (2%) exhibited the efficacy with rates of 20.57% and 23.02%, respectively. However, TCA (2%) showed significantly higher efficacy than TCA (1%) in the protective activity. The current study provides that TCA has a great potential to suppress A. brassicicola and can be a good alternative to synthetic fungicides.

Teşekkür

We thank to Dr. Salih Tunç Kaya for his valuable technical assistance in the statistical analyses of the study. We also appreciate to Dr. Selçuk Hazır and Dr. Harun Çimen to provide trans-cinnamic acid for the study.

Kaynakça

  • [1] A. Czajka, A. Czubatka, J. Sobolewski, J. Robak, “First report of Alternaria leaf spot caused by Alternaria alternate on spinach in Poland,” Plant Disease, vol. 99 issue 5, pp. 729–729, 2015. https://doi.org/10.1094/PDIS-10-14-1090-PD
  • [2] M. Nowicki, M. Nowakowska, A. Niezgoda, E. U. Kozik, “Alternaria black spot of crucifers: symptoms, important of disease, and perspectives of resistance breeding,” Vegetable Crops Research Bulletin, vol. 76, pp. 5–19, 2012. https://doi.org/10.2478/v10032-012-0001-6
  • [3] J. Kohl, C. A. M. van Tongeren, B. H. Groenenboom-de Haas, R. A. van Hoof, R. Driessen, L. van der Heijden, “Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae in organic seed production of cauliflower,” Plant Pathology, vol. 59, pp. 358–367, 2010. https://doi.org/10.1111/j.1365-3059.2009.02216.x
  • [4] T. Dethoup, P. Songkumarn, S. Rueangrit, S. Suesa-ard, C. Kaewkrajay, “Fungicidal activity of Thai medicinal plant extracts against Alternaria brassicicola causing black spot of Chinese kale,” European Journal of Plant Pathology, vol. 152, pp. 157–167, 2018. https://doi.org/10.1007/s10658-018-1460-5 [5] A. Jantasorn, J. Mongon, T. Ouiphisittraiwat, “In vivo antifungal activity of five plant extracts against Chinese kale leaf spot caused by Alternaria brassicicola,” Journal of Biopesticides, vol. 10, issue 1, pp. 43–49, 2017.
  • [6] D. Kumar, N. Maurya, Y. K. Bharti, A. Kumar, K. Kumar, K. Srivastava, G. Chand, C. Kushwaha, S. K. Singh, R. K. Mishra, A. Kumar, “Alternaria blight of oilseed brassicas: a comprehensive review,” African Journal of Microbiology Research, vol. 8, pp. 2816–2829, 2014. https://doi.org/10.5897/AJMR2013.6434
  • [7] T. Amein, S. A. Wright, M. Wikstrom, E. Koch, A. Schmitt, D. Stephan, M. Jahn, F. Tinivella, M. L. Gullino, G. Forsberg, S. Werner, J. Wolf, S. P. C. Groot, “Evaluation of non-chemical seed treatment methods for control Alternaria brassicicola on cabbage seeds,” Journal of Plant Disease and Protection, vol. 118, pp. 214–221, 2011. https://doi.org/10.1007/BF03356406
  • [8] J. P. Zubrod, M. Bundschuh, G. Arts, C. A. Brühl, G. Imfeld, A. Knäbel, S. Payraudeau, J. J. Rasmussen, J. Rohr, A. Scharmüller, K. Smalling, S. Stehle, R. Schulz, R. B. Schäfer, “Fungicides: An Overlooked Pesticide Class?” Environmental Science & Technology, vol. 53, issue 7, pp. 3347–3365, 2019. https://doi.org/10.1021/acs.est.8b04392
  • [9] N. E. Boemare and R. J. Akhurst, “The Genera Photorhabdus and Xenorhabdus,” in The Prokaryotes, New York, USA: Springer, 2006, pp. 451–494.
  • [10] B. Gulcu, H. Cimen, K. R. Ramalingam, S. Hazir, “Entomopathogenic Nematodes and their Mutualistic Bacteria: Their Ecology and Application as Microbial Control Agents,” Biopesticide International, vol. 13 issue 2, pp. 1-31, 2017.
  • [11] C. H. Bock, D. I. Shapiro-Ilan, D. Wedge, C. H. Cantrell, “Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide,” Journal of Pest Science, vol. 87, pp. 155–162, 2014. https://doi.org/10.1007/s10340-013-0519-5
  • [12] H. B., Bode, “Entomopathogenic bacteria as a source of secondary metabolites,” Current Opinion in Chemical Biology, vol. 13, pp. 1–7, 2009. https://doi.org/10.1016/j.cbpa.2009.02.037
  • [13] A. O. Brachmann, S. Forst, G. M. Furgani, A. Fodor, H. B. Bode, “Xenofuranones a and B: phenylpyruvate dimers from Xenorhabdus szentirmaii,” Journal of Natural Products, vol. 69, pp. 1830–1832, 2006. https://doi.org/10.1021/np060409n
  • [14] S. W. Fuchs, F. Grundmann, M. Kurz, M. Kaiser, H. B. Bode, “Fabclavines: Bioactive Peptide–Polyketide-Polyamino Hybrids from Xenorhabdus,” ChemBioChem, vol. 15, pp. 512–516, 2014. https://doi.org/10.1002/cbic.201300802
  • [15] M. Gualtieri, A. Aumelas, J. O. Thaler, “Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila,” The Journal of Antibiotics, vol. 62, pp. 295–302, 2009. https://doi.org/10.1038/ja.2009.31
  • [16] D. Ji, Y. Yi, G-H Kang, Y-H Choi, P. Kim, N-L Baek, Y. Kim, “Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria,” FEMS Microbiology Letters, vol. 239, pp. 241–248, 2004. https://doi.org/10.1016/j.femsle.2004.08.041
  • [17] G. Lang, T. Kalvelage, A. Peters, J. Wiese, J. F. Imhoff, “Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus,” Journal of Natural Products, vol. 71, pp. 1074–1077, 2008. https://doi.org/10.1021/np800053n
  • [18] D. I. Shapiro-Ilan, C. C. Reilly, M. W. Hotchkiss, “Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan,” Archives of Phytopathology and Plant Protection, vol. 42, pp. 715–728, 2009. https://doi.org/10.1080/03235400701390539
  • [19] X. L. Fang, Z. Z. Li, Y. H. Wang, X. Zhang, “In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea,” Journal of Applied Microbiology, vol. 111 issue 1, pp. 145–154, 2011. https://doi.org/10.1111/j.1365-2672.2011.05033.x
  • [20] X. Fang, M. Zhang, Q. Tang, Y. Wang, X. Zhang, “Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta,” Scientific Reports, vol. 4, pp. 1–7, 2014. https://doi.org/10.1038/srep04300 [21] S. Hazir, D. I. Shapiro-Ilan, C. H. Bock, C. Hazir, L. G. Leite, M. W. Hotchkiss, “Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens,” European Journal of Plant Pathology, vol. 146, pp. 369–381, 2016. https://doi.org/10.1007/s10658-016-0923-
  • [22] N. Adlığ, B. Gülcü, “Trans-Cinnamik Asit ve Xenorhabdus szentirmaii Metabolitlerinin Bitki Patojeni Fungus Botrytis cinerea Mücadelesinde Kullanımı,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, pp. 2000-2008, 2019. https://doi.org/10.29130/dubited.588711
  • [23] D. I. Shapiro-Ilan, C. H. Bock, M. W. Hotchkiss, “Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens,” Biological Control, vol. 77, pp. 1–6, 2014. https://doi.org/10.1016/j.biocontrol.2014.05.010
  • [24] A. Komhorn, S. Thongmee, T. Thammakun, T. Oiuphisittraiwat, A. Jantasorn, “In vivo testing of antagonistic fungi against Alternaria brassicicola causing Chinese kale black spot disease,” Journal of Plant Disease and Protection, vol. 128, pp. 183–189, 2021. https://doi.org/10.1007/s41348-020-00382-2
  • [25] N. Hassan, S. Nakasuji, M. M. Elsharkawy, H. A. Naznin, M. Kubota, H. Ketta, M. Shimizu, “Biocontrol Potential of an Endophytic Streptomyces sp. Strain MBCN152-1 against Alternaria brassicicola on Cabbage Plug Seedlings,” Microbes and Environment, vol. 32, issue 2, pp. 133-141, 2017. https://doi.org/10.1264/jsme2.ME17014
  • [26] R. K. Manhas, T. Kaur, “Biocontrol Potential of Streptomyces hydrogenans Strain DH16 toward Alternaria brassicicola to Control Damping Off and Black Leaf Spot of Raphanus sativus,” Frontiers in Plant Science, vol. 7, pp. 1869, 2016. https://doi.org/10.3389/fpls.2016.01869
  • [27] H. R. M. Galal, W. M. Salem, F. N. El-Deen, “Biological control of some pathogenic fungi using marine algae extracts,” Research Journal of Microbiology, vol. 6 issue 8, pp. 645-657, 2011. https://doi.org/10.3923/jm.2011.645.657
  • [30] S. Shan, H. Ma, Y. Li, C. Huang, X. Gu, Z. Jiang, B. Sun, C. Chen, X. Wei, G. Shen, D. I. Shapiro-Ilan, W. Ruan, “Metabolites from symbiotic bacteria of entomopathogenic nematodes have antimicrobial effects against Pythium myriotylum,” European Journal of Plant Pathology, vol. 158, pp. 35-44, 2021. https://doi.org/10.1007/s10658-020-02053-2
  • [31] H. Wang, K. Wen, X. Zhao, X. Wang, A. Li, H. Hong, “The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth promoting effect,” Crop Protection, vol. 28, issue 8, pp. 634–639, 2009. https://doi.org/10.1016/j.cropro.2009.03.017
  • [32] Y. Cho, “How the necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma,” Eukaryotic Cell, vol. 14, pp. 335–344, 2015. https://doi:10.1128/EC.00226-14
  • [33] E. Boszormenyi,T. Ersek, A. Fodor, A. M. Fodor, L. S. Foldes, M. Hevesi, J. S. Hogan, Z. Katona, M. G. Klein, A. Kormany, S. Pekar, A. Szentirmai, F. Sztaricskai, R. A. J. Taylor, “Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae,” Journal of Applied Microbiology, vol. 107, pp. 764–759, 2009. https://doi.org/10.1111/j.1365-2672.2009.04249.x
  • [34] A. Fodor, A. M. Fodor, S. Forst, J. S. Hogan, M. G. Klein, K. Lengyel, G. Saringer, E. Stackebrandt, R. A. J. Taylor, E. Lehoczky, “Comparative analysis of antibacterial activities of Xenorhabdus species on related and nonrelated bacteria in vivo,” Journal of Microbiology and Antimicrobials, vol. 2, pp. 36–46, 2010.
  • [35] S. L. Wenski, D. Kolbert, G. L. C. Grammbitter, H. B. Bode, “Fabclavine biosynthesis in X. szentirmaii: shortened derivatives and characterization of the thioester reductase FclG and the condensation domain-like protein FclL,” Journal of Industrial Microbiology and Biotechnology, vol. 46 issue 3-4, pp. 565–572, 2019. https://doi.org/10.1007/s10295-018-02124-8
  • [36] S. L. Wenski, H. Cimen, N. Berghaus, S.W. Fuchs, S. Hazir, H. B. Bode, “Fabclavine diversity in Xenorhabdus bacteria,” Beilstein Journal of Organic Chemistry, vol. 16, pp. 956–965, 2019. https://doi.org/10.3762/bjoc.16.84
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Barış Gülcü 0000-0002-4808-1538

Nedim Altın 0000-0003-1267-7951

Yayımlanma Tarihi 26 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Gülcü, B., & Altın, N. (2024). Control potency of Trans-cinnamic acid and antifungal metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola. Duzce University Journal of Science and Technology, 12(1), 365-374. https://doi.org/10.29130/dubited.1233579
AMA Gülcü B, Altın N. Control potency of Trans-cinnamic acid and antifungal metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola. DÜBİTED. Ocak 2024;12(1):365-374. doi:10.29130/dubited.1233579
Chicago Gülcü, Barış, ve Nedim Altın. “Control Potency of Trans-Cinnamic Acid and Antifungal Metabolites of Xenorhabdus Szentirmaii Against Alternaria Brassicicola”. Duzce University Journal of Science and Technology 12, sy. 1 (Ocak 2024): 365-74. https://doi.org/10.29130/dubited.1233579.
EndNote Gülcü B, Altın N (01 Ocak 2024) Control potency of Trans-cinnamic acid and antifungal metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola. Duzce University Journal of Science and Technology 12 1 365–374.
IEEE B. Gülcü ve N. Altın, “Control potency of Trans-cinnamic acid and antifungal metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola”, DÜBİTED, c. 12, sy. 1, ss. 365–374, 2024, doi: 10.29130/dubited.1233579.
ISNAD Gülcü, Barış - Altın, Nedim. “Control Potency of Trans-Cinnamic Acid and Antifungal Metabolites of Xenorhabdus Szentirmaii Against Alternaria Brassicicola”. Duzce University Journal of Science and Technology 12/1 (Ocak 2024), 365-374. https://doi.org/10.29130/dubited.1233579.
JAMA Gülcü B, Altın N. Control potency of Trans-cinnamic acid and antifungal metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola. DÜBİTED. 2024;12:365–374.
MLA Gülcü, Barış ve Nedim Altın. “Control Potency of Trans-Cinnamic Acid and Antifungal Metabolites of Xenorhabdus Szentirmaii Against Alternaria Brassicicola”. Duzce University Journal of Science and Technology, c. 12, sy. 1, 2024, ss. 365-74, doi:10.29130/dubited.1233579.
Vancouver Gülcü B, Altın N. Control potency of Trans-cinnamic acid and antifungal metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola. DÜBİTED. 2024;12(1):365-74.