Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Fırın Cürufu, Kalsine Kaolin ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi

Yıl 2024, , 400 - 418, 26.01.2024
https://doi.org/10.29130/dubited.1257545

Öz

Çimento ve beton teknolojisinde tercih edilen yüksek fırın cürufu (YFC), kalsine kaolin ve diatomit gibi mineral katkıların kullanımı her geçen gün artmaktadır. Bu malzemelerin yapısal özelliklerine bağlı olarak, betonun dayanım ve dayanıklılığında olumlu değişikliklerin meydana geldiği belirtilmektedir. Bu bağlamda mineral katkıların fiziksel ve kimyasal özelliklerinin yanı sıra, mineralojik, moleküler, termal ve mikro yapı gibi özelliklerinin belirlenmesinin de faydalı olabileceği düşünülmektedir. Bu amaçla ilk aşamada Portland çimento (PÇ), YFC, kalsine kaolin ve diatomitin fiziksel, kimyasal, mineralojik, moleküler, termal ve mikro yapı gibi yapısal özellikleri belirlenmiştir. İkinci aşamada YFC, kalsine kaolin ve diatomit, PÇ yerine ağırlıkça %10 oranlarında ikame edilerek, biri referans olmak üzere toplam 4 tip çimento elde edilmiştir. Son aşamada ise bu çimentolarla üretilen harç numunelerinin 2, 7, 28 ve 90. günlerde eğilme dayanım değerleri belirlenmiştir. Sonuç olarak harç numunelerinin eğilme dayanım değerlerinin, hidratasyon sürelerine ve mineral katkıların yapısal özelliklerine bağlı olarak farklılık gösterdiği belirtilebilir. Ayrıca YFC ikameli çimento harcının 90. günde neredeyse referans çimentonun eğilme dayanım değerine sahip olduğu ve diğer puzolanik malzemelere göre eğilme dayanımı açısından nispeten daha olumlu katkı sağladığı ifade edilebilir.

Teşekkür

Yazarlar, standart çimento deneylerinin yapılmasında desteklerini esirgemeyen Eskişehir Çimento Fabrikası laboratuvar çalışanları ve idarecilerine içtenlikle teşekkür ederler.

Kaynakça

  • [1] K. Fang, D. Wang, J. Zhao and M. Zhang “Utilization of ladle furnace slag as cement partial replacement: Influences on the hydration and hardening properties of cement,” Construction and Building Materials, vol. 299, no. 124265, 2021.
  • [2] B. Chen, L. Pang, Z. Zhou, Q. Chang, and P. Fu, “Study on the hydration properties of a ternary cementitious material system containing activated gold tailings and granulated blast furnace slag,” Journal of Building Engineering, vol. 63, no. 105574, 2023.
  • [3] E. Gödek, K. T. Felekoğlu, M. Keskinateş, and B. Felekoğlu, “Development of flaw tolerant fiber reinforced cementitious composites with calcined kaolin,” Applied Clay Science, vol. 146, pp.423-431, 2017.
  • [4] M. Karatas, A. Benli, and F. Arslan, “The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures,” Construction and Building Materials, vol. 265, no. 120300, 2020.
  • [5] O. Alselwi, B. X. Li, S. Liu Yue, and W. Zhi Wen, “Efficacy of sodium alginate, xanthan gum, and diatomite admixtures in improving the strength and shrinkage behaviour of EPS lightweight concrete,” European Journal of Environmental and Civil Engineering, pp.1-14, 2022. (Early Access)
  • [6] Z. Lv, A. Jiang, and J. Jin, “Influence of ultrafine diatomite on cracking behavior of concrete: An acoustic emission analysis,” Construction and Building Materials, vol. 308, no. 124993, 2021.
  • [7] J. Liu, Q. Yu, Z. Zuo, F. Yang, W. Duan, and Q. Qin, “Blast furnace slag obtained from dry granulation method as a component in slag cement,” Construction and Building Materials, vol. 131, pp.381-387, 2017.
  • [8] M. Tokyay ve K. Erdoğdu, “Cüruflar ve cüruflu çimentolar,” TÇMB/AR-GE/Y97.2, Ankara, 1997.
  • [9] H. Yalçın ve M. Gürü, Çimento ve Beton, Ankara, Türkiye: Palme Yayıncılık, 2006, böl. 3, ss. 38.
  • [10] F. Arslan, “Kaolin kullanımının kendiliğinden yerleşen harçların dayanım ve dayanıklılık özelliklerine etkisi,” Yüksek Lisans Tezi, İnşaat Mühendisliği, Fırat Üniversitesi, Elazığ, Türkiye, 2019.
  • [11] N. Shafiq, M. F. Nuruddin, S. U. Khan, and T. Ayub, “Calcined kaolin as cement replacing material and its use in high strength concrete,” Construction and Building Materials, vol. 81, pp.313-323, 2015.
  • [12] Z. Yılmaz, “Hidrotermal yöntemlerle kaolin’in dekompozisyonu,” Yüksek Lisans Tezi, Kimya, Balıkesir Üniversitesi, Balıkesir Türkiye, 2004.
  • [13] G. Kakali, T. H. Perraki, S. Tsivilis, and E. Badogiannis, “Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity,” Applied clay science, vol. 20, no. 1-2, pp.73-80, 2001.
  • [14] A. Shvarzman, K. Kovler, G. S. Grader, and G. E. Shter, “The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite,” Cement and concrete research, vol. 33, no. 3, pp.405-416, 2003.
  • [15] E. Badogiannis, G. Kakali, and S. Tsivilis, “Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion,” Journal of thermal analysis and calorimetry, vol. 81, no. 2, pp.457-462, 2005.
  • [16] Ç. Salam, “Fiziksel ve kimyasal işlemlerin kaolin’in yapısına etkileri” Yüksek lisans tezi, Kimya Ana Bilim Dalı, Fen Bilimleri Enstitüsü, Balıkesir Üniversitesi, Balıkesir, 2004.
  • [17] Z. Ahmadi, J. Esmaeili, J. Kasaei, and R. Hajialioghli, “Properties of sustainable cement mortars containing high volume of raw diatomite,” Sustainable Materials and Technologies, vol. 16, pp.47-53, 2018.
  • [18] H.Y. Aruntaş, “Diatomitlerin çimentolu sistemlerde puzolanik malzeme olarak kullanılabilirliği,” Doktora Tezi, Mimarlık, Gazi Üniversitesi, Ankara, Türkiye, 1996. [19] A. Uygun, Diatomit Jeolojisi, ve yararlanma olanakları. Bilimsel Madencilik Dergisi, c. 15, s. 5, ss. 31-38, 1976.
  • [20] Çalışkan M. “Doğal Diatomit (Çaldıran-Van) Üzerine Basic Blue Ve Neutral Red Boyar Maddelerinin Adsorpsiyon ve Denge Çalışması,” Yüksek Lisans Tezi, Kimya, Ordu Üniversitesi, Ordu, Türkiye, 2018.
  • [21] S. Benayache, S. Alleg, A. Mebrek, and J. J. Suñol, “Thermal and microstructural properties of paraffin/diatomite composite,” Vacuum, vol. 157, pp.136-144, 2018.
  • [22] E. Worrell, N. Martin and L. Price, “Potentials for energy efficiency improvement in the US cement industry,” Energy, vol. 25, no. 12, pp.1189-1214, 2000.
  • [23] A. Hasanbeigi, L. Price and E. Lin, “Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp. 6220-6238, 2012.
  • [24] S. R. Salla, R. B. Uppara, A. K. Kannazia, B. Kondraivendhan, and C. D. Modhera, “An experimental and environmental impact assessment of slag-based mineral admixture for sustainable development,” Innovative Infrastructure Solutions, vol. 8, no. 29, 2023.
  • [25] C. Zhu, H. Tan, C. Du, J. Wang, X. Deng, Z. Zheng, and X. He, “Enhancement of ultra-fine slag on compressive strength of solid waste-based cementitious materials: Towards low carbon emissions,” Journal of Building Engineering, vol. 63, no. 105475, 2023.
  • [26] M. M. López, Y. Pineda and O. Gutiérrez, “Evaluation of durability and mechanical properties of the cement mortar added with slag blast furnace,” Procedia Materials Science, vol. 9, pp. 367-376, 2015.
  • [27] J. Zhu, Q. Zhong, G. Chen and D. Li, “Effect of particlesize of blast furnace slag on properties of portland cement,” Procedia Engineering, vol. 27, pp. 231-236, 2012.
  • [28] D. N. Richardson, “Strength and Durability Characteristics of a 70% Ground Granulated Blast Furnace Slag (GGBFS) Concrete Mix,” Organizational Results Research Report, Missouri Department of Transportation (MoDOT), 2006.
  • [29] K. Mermerdaş, M. Gesoğlu, E. Güneyisi, and T. Özturan, “Strength development of concretes incorporated with metakaolin and different types of calcined kaolins,” Construction and Building Materials, vol. 37, pp.766-774, 2012.
  • [30] S. Tongbo, W. Bin, Z. Lijun, and C. Zhifeng, Meta-Kaolin for high performance concrete. In Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete (pp. 467-477). Springer Netherlands, 2015.
  • [31] D. D. Vu, P. Stroeven, and V. B. Bui, “Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete,” Cement and Concrete Composites, vol. 23, no. 6, pp.471-478, 2001.
  • [32] O. Keleştemur and B. Demirel, “Effect of metakaolin on the corrosion resistance of structural lightweight concrete,” Construction and Building Materials, vol. 81, pp. 172-178, 2015.
  • [33] H. Sun, W. Cheng, H. Xu, Z. Cai, M. Yin, and F. Shi, “Influence of CO2 Curing on the Alkali-Activated Compound Mineral Admixtures’ Corrosion Resistance to NaCl Dry-Wet Alternations,” Coatings, vol. 13, no. 67, 2023.
  • [34] H. Y. Aruntaş, E. Yildiz, and G. Kaplan, “The engineering performance of eco-friendly concretes containing diatomite fly ash and ground granulated blast furnace slag,” Acta Polytechnica, vol. 62, no.5, pp. 505-521, 2022.
  • [35] Y. Kocak, and M. Savas, “Effect of the PC, diatomite and zeolite on the performance of concrete composites,” Computers and Concrete, vol. 17, no. 6, 815-829, 2016.
  • [36] Çimento deney metotları - Bölüm 1: Dayanım tayini, Türk Standartlar Enstitüsü, TS EN 196-1, 2016.
  • [37] Çimento deney yöntemleri - Bölüm 6: İncelik tayini, Türk Standartlar Enstitüsü TS EN 196-6, 2020.
  • [38] Çimento deney yöntemleri - Bölüm 2: Çimentonun kimyasal analizi, Türk Standartlar Enstitüsü TS EN 196-2, 2013.
  • [39] Çimento- Bölüm 1: Genel ÇimentolarBileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartlar Enstitüsü TS EN 197-1, 2012.
  • [40] M., Tokyay ve K. Erdoğdu, “Cüruflar ve cüruflu çimentolar, Araştırmaların Gözden Geçirilmesi ve Durum Değerlendirmesi Raporu,” TÇMB/AR-GE/Y 97.2, ANKARA, 2011.
  • [41] Doğal puzolan (tras)-Çimento ve betonda kullanılan-Tarifler, gerekler ve uygunluk kriterleri, Türk Standartlar Enstitüsü TS 25, 2015.
  • [42] Y. C. Choi and B. Park, “Enhanced autogenous healing of ground granulated blast furnace slag blended cements and mortars,” Journal of Materials Research and Technology, vol. 8, no. 4, pp. 3443-3452, 2019.
  • [43] X. Huang, M. Jiang, X. Zhao and C. Tang, “Mechanical properties and hydration mechanisms of high-strength fluorogypsum-blast furnace slag-based hydraulic cementitious binder,” Construction and Building Materials, vol. 127, pp. 137-143, 2016.
  • [44] Y. İ. Şahin, and Y. Koçak, “Yüksek Fırın Cürufu İkameli Çimentoların Yapısal ve Mekanik Özelliklerinin Araştırılması,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 10, s. 2,ss. 802-814, 2022.
  • [45] H. N. Yoon, J. Seo, S. Kim, H. K. Lee and S. Park, “Hydration of calcium sulfoaluminate cement blended with blast-furnace slag,” Construction and Building Materials, vol. 268, no. 121214, 2021.
  • [46] M. Yanık, “Farklı incelikte öğütülmüş obsidyen katkılı çimentoların puzolanik özelliklerinin tayini,” Yüksek lisans tezi, İnşaat Mühendisliği, Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye, 2019.
  • [47] B. Sarde, Y. Patil, B. Dholakiya, and V. Pawar, “Effect of calcined kaolin clay on mechanical and durability properties of pet waste-based polymer mortar composites,” Construction and Building Materials, vol. 318, no. 126027, 2022.
  • [48] G. Yao, J. Lei, X. Zhang, Z. Sun, S. Zheng, and S. Komarneni, “Mechanism of zeolite X crystallization from diatomite,” Materials Research Bulletin, vol. 107, pp. 132-138, 2018.
  • [49] B. Figarska-Warchoł, G. Stańczak, M. Rembiś, and T. Toboła, “Diatomaceous rocks of the Jawornik deposit (the Polish Outer Carpathians): petrophysical and petrographical evaluation,” Geology, Geophysics and Environment, vol. 41, no. 4, pp. 311-331, 2015.
  • [50] Y. Kocak, and İ. Pınarcı, “Effects of hydration mechanism on mechanical properties of diatomite-cement composites,” European Journal of Environmental and Civil Engineering, pp. 1-15, 2022. (Early Access)
  • [51] F. Puertas, A. Fernandez-Jimenez and M.T. Blanco-Varela, “Pore solution ın alkali-activated slag cement pastes. relation to the composition and structure of calcium silicate hydrate,” Cement And Concrete Research, vol. 34, no.1, pp. 139-148, 2004.
  • [52] M. J. Varas, M. A. De Buergo and R. Fort, “Natural cement as the precursor of portland cement: Methodology for its identification,” Cement and Concrete Research, vol. 35, no. 11, pp. 2055-2065, 2005.
  • [53] F. I. Adeniyi and M.B. Ogundiran, “Synthesis of geopolymer binders and mortars from Ijero-Ekiti calcined clay, blast furnace slag and river sand,” Earthline Journal of Chemical Sciences, vol. 4, no. 1, pp. 15-34, 2020.
  • [54] A. R. Sakulich, S. Miller and M.W. Barsoum, “Chemical and microstructural characterization of 20-month-old alkali-activated slag cements,” Journal of the American Ceramic Society, vol. 93, no. 6, pp. 1741-1748, 2010.
  • [55] Y. Huang, D. E. N. G. Jie, W. A. N. G. Weiqing, F. E. N. G. Qiming, and X. U. Zhonghui, “Preliminary investigation of pozzolanic properties of calcined waste kaolin,” Materials Science, vol. 24, no. 2, pp. 177-184, 2018.
  • [56] J. A. C. Costa, A. E. Martinelli, R. M. do Nascimento, and A. M. Mendes, “Microstructural design and thermal characterization of composite diatomite-vermiculite paraffin-based form-stable PCM for cementitious mortars,” Construction and Building Materials, vol. 232, no. 117167, 2020.
  • [57] T. Qian, J. Li, X. Min, Y. Deng, W. Guan, and L. Ning, Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material. Energy Conversion and Management, vol. 98, pp. 34-45, 2015.
  • [58] A. Sarı, G. Hekimoğlu, V. V. Tyagi, and R. K. Sharma, “Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters,” Energy, vol. 207, no. 118242, 2020.
  • [59] H. Oğuz. (2023, 30 Ocak). TERMAL ANALİZLER (TA). Erişim: http://huseyinoguz.net/mysite/TERMALANALiZLERv3_17-02-07.pdf
  • [60] S. Kurugöl, “Puzolanik Aktivite Tespit Yöntemleri: Fiziksel Metotlar,” Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 38, s. 1, ss. 21-39, 2017.
  • [61] R. Gabrovšek, T. Vuk, and V. Kaučič, “Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis,” Acta Chim. Slov, vol. 53, no. 2, pp. 159-165, 2006.
  • [62] W. E. A. Z. Sha, E. A. O’Neill, and Z. Guo, “Differential scanning calorimetry study of ordinary Portland cement,” Cement and Concrete research, vol. 29, no. 9, pp. 1487-1489, 1999. [63] C. Fredericci, E. D. Zanotto, and E. C. Ziemath, “Crystallization mechanism and properties of a blast furnace slag glass,” Journal of non-crystalline solids, vol. 273, no. 1-3, pp. 64-75, 2000.
  • [64] S. C. Ma, Z. G. Wang, J. L. Zhang, D. H. Sun, and G. X. Liu, “Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions,” Applied Surface Science, vol. 327, pp. 453-461, 2015.
  • [65] R. Siddique, and M. I. Khan, Supplementary cementing materials, Springer Science and Business Media, e-ISBN 978-3-642-17866-5. 2011, pp. 123-124.
  • [66] A. Dixit, H. Du, and S. Dai Pang, “Marine clay in ultra-high performance concrete for filler substitution,” Construction and Building Materials, vol. 263, no. 120250 2020.
  • [67] N. M. Ahmed, “Comparative study on the role of kaolin, calcined kaolin and chemically treated kaolin in alkyd‐based paints for protection of steel,” Pigment and Resin Technology, vol. 42, no. 1, pp. 3-14, 2013.
  • [68] E. V. Evdokimova, P. A. Matskan, and G. V. Mamontov, MIL-100 (Fe)/Diatomite Composite with Hierarchical Porous Structure for Sorption of Volatile Organic Compounds. Russian Journal of Physical Chemistry A, vol. 96, no. 1, pp. 171-178, 2022.
  • [69] Q. Sun, H. Li, B. Niu, X. Hu, C. Xu, and S. Zheng, “Nano-TiO2 immobilized on diatomite: characterization and photocatalytic reactivity for Cu2+ removal from aqueous solution,” Procedia engineering, vol. 102, pp. 1935-1943, 2015.

Effect of Structural Properties of Blast Furnace Slag, Calcined Kaolin and Diatomite Substituted Cements on Flexural Strength

Yıl 2024, , 400 - 418, 26.01.2024
https://doi.org/10.29130/dubited.1257545

Öz

The use of mineral additives such as blast furnace slag (BFS), calcined kaolin and diatomite, which are preferred in cement and concrete technology, is increasing day by day. It is stated that positive changes occur in the strength and durability of concrete depending on the structural properties of these materials. In this context, besides the physical and chemical properties of mineral additives, it is thought that it may be useful to determine the properties such as mineralogical, molecular, thermal and microstructure. For this purpose, in the first stage, structural properties such as physical, chemical, mineralogical, molecular, thermal and microstructure of Portland cement (PC), BFS, calcined kaolin and diatomite were determined. In the second stage, a total of 4 types of cement, one of which is a reference, were obtained by substituting BFS, calcined kaolin and diatomite at 10% by weight instead of PC. At the last stage, the flexural strength values of the mortar samples produced with these cements were determined at the 2-day, 7-day, 28-day and 90-day. As a result, it can be stated that the flexural strength values of the mortar samples differ depending on the hydration times and the structural properties of the mineral admixtures. Furthermore, it can be stated that the cement mortar with BFS additives has values close to the flexural strength of the reference cement at 90-day, and provides a relatively more positive contribution in terms of flexural strength compared to other pozzolanic materials.

Kaynakça

  • [1] K. Fang, D. Wang, J. Zhao and M. Zhang “Utilization of ladle furnace slag as cement partial replacement: Influences on the hydration and hardening properties of cement,” Construction and Building Materials, vol. 299, no. 124265, 2021.
  • [2] B. Chen, L. Pang, Z. Zhou, Q. Chang, and P. Fu, “Study on the hydration properties of a ternary cementitious material system containing activated gold tailings and granulated blast furnace slag,” Journal of Building Engineering, vol. 63, no. 105574, 2023.
  • [3] E. Gödek, K. T. Felekoğlu, M. Keskinateş, and B. Felekoğlu, “Development of flaw tolerant fiber reinforced cementitious composites with calcined kaolin,” Applied Clay Science, vol. 146, pp.423-431, 2017.
  • [4] M. Karatas, A. Benli, and F. Arslan, “The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures,” Construction and Building Materials, vol. 265, no. 120300, 2020.
  • [5] O. Alselwi, B. X. Li, S. Liu Yue, and W. Zhi Wen, “Efficacy of sodium alginate, xanthan gum, and diatomite admixtures in improving the strength and shrinkage behaviour of EPS lightweight concrete,” European Journal of Environmental and Civil Engineering, pp.1-14, 2022. (Early Access)
  • [6] Z. Lv, A. Jiang, and J. Jin, “Influence of ultrafine diatomite on cracking behavior of concrete: An acoustic emission analysis,” Construction and Building Materials, vol. 308, no. 124993, 2021.
  • [7] J. Liu, Q. Yu, Z. Zuo, F. Yang, W. Duan, and Q. Qin, “Blast furnace slag obtained from dry granulation method as a component in slag cement,” Construction and Building Materials, vol. 131, pp.381-387, 2017.
  • [8] M. Tokyay ve K. Erdoğdu, “Cüruflar ve cüruflu çimentolar,” TÇMB/AR-GE/Y97.2, Ankara, 1997.
  • [9] H. Yalçın ve M. Gürü, Çimento ve Beton, Ankara, Türkiye: Palme Yayıncılık, 2006, böl. 3, ss. 38.
  • [10] F. Arslan, “Kaolin kullanımının kendiliğinden yerleşen harçların dayanım ve dayanıklılık özelliklerine etkisi,” Yüksek Lisans Tezi, İnşaat Mühendisliği, Fırat Üniversitesi, Elazığ, Türkiye, 2019.
  • [11] N. Shafiq, M. F. Nuruddin, S. U. Khan, and T. Ayub, “Calcined kaolin as cement replacing material and its use in high strength concrete,” Construction and Building Materials, vol. 81, pp.313-323, 2015.
  • [12] Z. Yılmaz, “Hidrotermal yöntemlerle kaolin’in dekompozisyonu,” Yüksek Lisans Tezi, Kimya, Balıkesir Üniversitesi, Balıkesir Türkiye, 2004.
  • [13] G. Kakali, T. H. Perraki, S. Tsivilis, and E. Badogiannis, “Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity,” Applied clay science, vol. 20, no. 1-2, pp.73-80, 2001.
  • [14] A. Shvarzman, K. Kovler, G. S. Grader, and G. E. Shter, “The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite,” Cement and concrete research, vol. 33, no. 3, pp.405-416, 2003.
  • [15] E. Badogiannis, G. Kakali, and S. Tsivilis, “Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion,” Journal of thermal analysis and calorimetry, vol. 81, no. 2, pp.457-462, 2005.
  • [16] Ç. Salam, “Fiziksel ve kimyasal işlemlerin kaolin’in yapısına etkileri” Yüksek lisans tezi, Kimya Ana Bilim Dalı, Fen Bilimleri Enstitüsü, Balıkesir Üniversitesi, Balıkesir, 2004.
  • [17] Z. Ahmadi, J. Esmaeili, J. Kasaei, and R. Hajialioghli, “Properties of sustainable cement mortars containing high volume of raw diatomite,” Sustainable Materials and Technologies, vol. 16, pp.47-53, 2018.
  • [18] H.Y. Aruntaş, “Diatomitlerin çimentolu sistemlerde puzolanik malzeme olarak kullanılabilirliği,” Doktora Tezi, Mimarlık, Gazi Üniversitesi, Ankara, Türkiye, 1996. [19] A. Uygun, Diatomit Jeolojisi, ve yararlanma olanakları. Bilimsel Madencilik Dergisi, c. 15, s. 5, ss. 31-38, 1976.
  • [20] Çalışkan M. “Doğal Diatomit (Çaldıran-Van) Üzerine Basic Blue Ve Neutral Red Boyar Maddelerinin Adsorpsiyon ve Denge Çalışması,” Yüksek Lisans Tezi, Kimya, Ordu Üniversitesi, Ordu, Türkiye, 2018.
  • [21] S. Benayache, S. Alleg, A. Mebrek, and J. J. Suñol, “Thermal and microstructural properties of paraffin/diatomite composite,” Vacuum, vol. 157, pp.136-144, 2018.
  • [22] E. Worrell, N. Martin and L. Price, “Potentials for energy efficiency improvement in the US cement industry,” Energy, vol. 25, no. 12, pp.1189-1214, 2000.
  • [23] A. Hasanbeigi, L. Price and E. Lin, “Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp. 6220-6238, 2012.
  • [24] S. R. Salla, R. B. Uppara, A. K. Kannazia, B. Kondraivendhan, and C. D. Modhera, “An experimental and environmental impact assessment of slag-based mineral admixture for sustainable development,” Innovative Infrastructure Solutions, vol. 8, no. 29, 2023.
  • [25] C. Zhu, H. Tan, C. Du, J. Wang, X. Deng, Z. Zheng, and X. He, “Enhancement of ultra-fine slag on compressive strength of solid waste-based cementitious materials: Towards low carbon emissions,” Journal of Building Engineering, vol. 63, no. 105475, 2023.
  • [26] M. M. López, Y. Pineda and O. Gutiérrez, “Evaluation of durability and mechanical properties of the cement mortar added with slag blast furnace,” Procedia Materials Science, vol. 9, pp. 367-376, 2015.
  • [27] J. Zhu, Q. Zhong, G. Chen and D. Li, “Effect of particlesize of blast furnace slag on properties of portland cement,” Procedia Engineering, vol. 27, pp. 231-236, 2012.
  • [28] D. N. Richardson, “Strength and Durability Characteristics of a 70% Ground Granulated Blast Furnace Slag (GGBFS) Concrete Mix,” Organizational Results Research Report, Missouri Department of Transportation (MoDOT), 2006.
  • [29] K. Mermerdaş, M. Gesoğlu, E. Güneyisi, and T. Özturan, “Strength development of concretes incorporated with metakaolin and different types of calcined kaolins,” Construction and Building Materials, vol. 37, pp.766-774, 2012.
  • [30] S. Tongbo, W. Bin, Z. Lijun, and C. Zhifeng, Meta-Kaolin for high performance concrete. In Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete (pp. 467-477). Springer Netherlands, 2015.
  • [31] D. D. Vu, P. Stroeven, and V. B. Bui, “Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete,” Cement and Concrete Composites, vol. 23, no. 6, pp.471-478, 2001.
  • [32] O. Keleştemur and B. Demirel, “Effect of metakaolin on the corrosion resistance of structural lightweight concrete,” Construction and Building Materials, vol. 81, pp. 172-178, 2015.
  • [33] H. Sun, W. Cheng, H. Xu, Z. Cai, M. Yin, and F. Shi, “Influence of CO2 Curing on the Alkali-Activated Compound Mineral Admixtures’ Corrosion Resistance to NaCl Dry-Wet Alternations,” Coatings, vol. 13, no. 67, 2023.
  • [34] H. Y. Aruntaş, E. Yildiz, and G. Kaplan, “The engineering performance of eco-friendly concretes containing diatomite fly ash and ground granulated blast furnace slag,” Acta Polytechnica, vol. 62, no.5, pp. 505-521, 2022.
  • [35] Y. Kocak, and M. Savas, “Effect of the PC, diatomite and zeolite on the performance of concrete composites,” Computers and Concrete, vol. 17, no. 6, 815-829, 2016.
  • [36] Çimento deney metotları - Bölüm 1: Dayanım tayini, Türk Standartlar Enstitüsü, TS EN 196-1, 2016.
  • [37] Çimento deney yöntemleri - Bölüm 6: İncelik tayini, Türk Standartlar Enstitüsü TS EN 196-6, 2020.
  • [38] Çimento deney yöntemleri - Bölüm 2: Çimentonun kimyasal analizi, Türk Standartlar Enstitüsü TS EN 196-2, 2013.
  • [39] Çimento- Bölüm 1: Genel ÇimentolarBileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartlar Enstitüsü TS EN 197-1, 2012.
  • [40] M., Tokyay ve K. Erdoğdu, “Cüruflar ve cüruflu çimentolar, Araştırmaların Gözden Geçirilmesi ve Durum Değerlendirmesi Raporu,” TÇMB/AR-GE/Y 97.2, ANKARA, 2011.
  • [41] Doğal puzolan (tras)-Çimento ve betonda kullanılan-Tarifler, gerekler ve uygunluk kriterleri, Türk Standartlar Enstitüsü TS 25, 2015.
  • [42] Y. C. Choi and B. Park, “Enhanced autogenous healing of ground granulated blast furnace slag blended cements and mortars,” Journal of Materials Research and Technology, vol. 8, no. 4, pp. 3443-3452, 2019.
  • [43] X. Huang, M. Jiang, X. Zhao and C. Tang, “Mechanical properties and hydration mechanisms of high-strength fluorogypsum-blast furnace slag-based hydraulic cementitious binder,” Construction and Building Materials, vol. 127, pp. 137-143, 2016.
  • [44] Y. İ. Şahin, and Y. Koçak, “Yüksek Fırın Cürufu İkameli Çimentoların Yapısal ve Mekanik Özelliklerinin Araştırılması,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 10, s. 2,ss. 802-814, 2022.
  • [45] H. N. Yoon, J. Seo, S. Kim, H. K. Lee and S. Park, “Hydration of calcium sulfoaluminate cement blended with blast-furnace slag,” Construction and Building Materials, vol. 268, no. 121214, 2021.
  • [46] M. Yanık, “Farklı incelikte öğütülmüş obsidyen katkılı çimentoların puzolanik özelliklerinin tayini,” Yüksek lisans tezi, İnşaat Mühendisliği, Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye, 2019.
  • [47] B. Sarde, Y. Patil, B. Dholakiya, and V. Pawar, “Effect of calcined kaolin clay on mechanical and durability properties of pet waste-based polymer mortar composites,” Construction and Building Materials, vol. 318, no. 126027, 2022.
  • [48] G. Yao, J. Lei, X. Zhang, Z. Sun, S. Zheng, and S. Komarneni, “Mechanism of zeolite X crystallization from diatomite,” Materials Research Bulletin, vol. 107, pp. 132-138, 2018.
  • [49] B. Figarska-Warchoł, G. Stańczak, M. Rembiś, and T. Toboła, “Diatomaceous rocks of the Jawornik deposit (the Polish Outer Carpathians): petrophysical and petrographical evaluation,” Geology, Geophysics and Environment, vol. 41, no. 4, pp. 311-331, 2015.
  • [50] Y. Kocak, and İ. Pınarcı, “Effects of hydration mechanism on mechanical properties of diatomite-cement composites,” European Journal of Environmental and Civil Engineering, pp. 1-15, 2022. (Early Access)
  • [51] F. Puertas, A. Fernandez-Jimenez and M.T. Blanco-Varela, “Pore solution ın alkali-activated slag cement pastes. relation to the composition and structure of calcium silicate hydrate,” Cement And Concrete Research, vol. 34, no.1, pp. 139-148, 2004.
  • [52] M. J. Varas, M. A. De Buergo and R. Fort, “Natural cement as the precursor of portland cement: Methodology for its identification,” Cement and Concrete Research, vol. 35, no. 11, pp. 2055-2065, 2005.
  • [53] F. I. Adeniyi and M.B. Ogundiran, “Synthesis of geopolymer binders and mortars from Ijero-Ekiti calcined clay, blast furnace slag and river sand,” Earthline Journal of Chemical Sciences, vol. 4, no. 1, pp. 15-34, 2020.
  • [54] A. R. Sakulich, S. Miller and M.W. Barsoum, “Chemical and microstructural characterization of 20-month-old alkali-activated slag cements,” Journal of the American Ceramic Society, vol. 93, no. 6, pp. 1741-1748, 2010.
  • [55] Y. Huang, D. E. N. G. Jie, W. A. N. G. Weiqing, F. E. N. G. Qiming, and X. U. Zhonghui, “Preliminary investigation of pozzolanic properties of calcined waste kaolin,” Materials Science, vol. 24, no. 2, pp. 177-184, 2018.
  • [56] J. A. C. Costa, A. E. Martinelli, R. M. do Nascimento, and A. M. Mendes, “Microstructural design and thermal characterization of composite diatomite-vermiculite paraffin-based form-stable PCM for cementitious mortars,” Construction and Building Materials, vol. 232, no. 117167, 2020.
  • [57] T. Qian, J. Li, X. Min, Y. Deng, W. Guan, and L. Ning, Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material. Energy Conversion and Management, vol. 98, pp. 34-45, 2015.
  • [58] A. Sarı, G. Hekimoğlu, V. V. Tyagi, and R. K. Sharma, “Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters,” Energy, vol. 207, no. 118242, 2020.
  • [59] H. Oğuz. (2023, 30 Ocak). TERMAL ANALİZLER (TA). Erişim: http://huseyinoguz.net/mysite/TERMALANALiZLERv3_17-02-07.pdf
  • [60] S. Kurugöl, “Puzolanik Aktivite Tespit Yöntemleri: Fiziksel Metotlar,” Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 38, s. 1, ss. 21-39, 2017.
  • [61] R. Gabrovšek, T. Vuk, and V. Kaučič, “Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis,” Acta Chim. Slov, vol. 53, no. 2, pp. 159-165, 2006.
  • [62] W. E. A. Z. Sha, E. A. O’Neill, and Z. Guo, “Differential scanning calorimetry study of ordinary Portland cement,” Cement and Concrete research, vol. 29, no. 9, pp. 1487-1489, 1999. [63] C. Fredericci, E. D. Zanotto, and E. C. Ziemath, “Crystallization mechanism and properties of a blast furnace slag glass,” Journal of non-crystalline solids, vol. 273, no. 1-3, pp. 64-75, 2000.
  • [64] S. C. Ma, Z. G. Wang, J. L. Zhang, D. H. Sun, and G. X. Liu, “Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions,” Applied Surface Science, vol. 327, pp. 453-461, 2015.
  • [65] R. Siddique, and M. I. Khan, Supplementary cementing materials, Springer Science and Business Media, e-ISBN 978-3-642-17866-5. 2011, pp. 123-124.
  • [66] A. Dixit, H. Du, and S. Dai Pang, “Marine clay in ultra-high performance concrete for filler substitution,” Construction and Building Materials, vol. 263, no. 120250 2020.
  • [67] N. M. Ahmed, “Comparative study on the role of kaolin, calcined kaolin and chemically treated kaolin in alkyd‐based paints for protection of steel,” Pigment and Resin Technology, vol. 42, no. 1, pp. 3-14, 2013.
  • [68] E. V. Evdokimova, P. A. Matskan, and G. V. Mamontov, MIL-100 (Fe)/Diatomite Composite with Hierarchical Porous Structure for Sorption of Volatile Organic Compounds. Russian Journal of Physical Chemistry A, vol. 96, no. 1, pp. 171-178, 2022.
  • [69] Q. Sun, H. Li, B. Niu, X. Hu, C. Xu, and S. Zheng, “Nano-TiO2 immobilized on diatomite: characterization and photocatalytic reactivity for Cu2+ removal from aqueous solution,” Procedia engineering, vol. 102, pp. 1935-1943, 2015.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayperi Tanık 0000-0002-5172-9331

Yılmaz Koçak 0000-0002-5281-5450

Yayımlanma Tarihi 26 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tanık, A., & Koçak, Y. (2024). Yüksek Fırın Cürufu, Kalsine Kaolin ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi. Duzce University Journal of Science and Technology, 12(1), 400-418. https://doi.org/10.29130/dubited.1257545
AMA Tanık A, Koçak Y. Yüksek Fırın Cürufu, Kalsine Kaolin ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi. DÜBİTED. Ocak 2024;12(1):400-418. doi:10.29130/dubited.1257545
Chicago Tanık, Ayperi, ve Yılmaz Koçak. “Yüksek Fırın Cürufu, Kalsine Kaolin Ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi”. Duzce University Journal of Science and Technology 12, sy. 1 (Ocak 2024): 400-418. https://doi.org/10.29130/dubited.1257545.
EndNote Tanık A, Koçak Y (01 Ocak 2024) Yüksek Fırın Cürufu, Kalsine Kaolin ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi. Duzce University Journal of Science and Technology 12 1 400–418.
IEEE A. Tanık ve Y. Koçak, “Yüksek Fırın Cürufu, Kalsine Kaolin ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi”, DÜBİTED, c. 12, sy. 1, ss. 400–418, 2024, doi: 10.29130/dubited.1257545.
ISNAD Tanık, Ayperi - Koçak, Yılmaz. “Yüksek Fırın Cürufu, Kalsine Kaolin Ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi”. Duzce University Journal of Science and Technology 12/1 (Ocak 2024), 400-418. https://doi.org/10.29130/dubited.1257545.
JAMA Tanık A, Koçak Y. Yüksek Fırın Cürufu, Kalsine Kaolin ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi. DÜBİTED. 2024;12:400–418.
MLA Tanık, Ayperi ve Yılmaz Koçak. “Yüksek Fırın Cürufu, Kalsine Kaolin Ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi”. Duzce University Journal of Science and Technology, c. 12, sy. 1, 2024, ss. 400-18, doi:10.29130/dubited.1257545.
Vancouver Tanık A, Koçak Y. Yüksek Fırın Cürufu, Kalsine Kaolin ve Diatomit İkameli Çimentoların Yapısal Özeliklerinin Eğilme Dayanımına Etkisi. DÜBİTED. 2024;12(1):400-18.