Overcut Optimization in Machining of DIN 1.2767 Tool Steel with Electro Erosion Technique
Year 2025,
Volume: 13 Issue: 1, 121 - 130, 30.01.2025
Abubaker Fatatit
,
Ali Kalyon
Abstract
Electro discharge machining is an energy based method that can cause fast electrode wear and dimensional errors. This study aimed to identify the optimum process parameters for processing 1.2767 steel using copper-based electrodes. The Taguchi optimization approach was used, and 18 pieces of 1.2767 steel were prepared for the experiments. The electrodes used were CuCoNiBe and CuNi2SiCr, and the electrode surfaces were sanded and polished before processing. The results showed that the CuNi2SiCr electrode produced the lowest overcut value of 0.07 mm, while the CuCoNiBe electrode had the highest observed overcut value of 0.320 mm. The discharge level had the most significant impact on overcut, while the type of electrode had the least. The optimal parameters for the CuNi2SiCr electrode were 12 A discharge current, 50 µs pulse duration, and 800 µs pulse off time. The processing under ideal conditions resulted in an overcut measurement value of 0.05 mm.
References
-
[1] A. Kalyon, “Optimization of the machinability of aluminum 6082 alloy by brass
electrode” El-Cezeri, vol. 6, no. 1, pp. 118–130, 2019.
-
[2] N. Mohd Abbas, D. G. Solomon, and M. Fuad Bahari, “A review on current research trends in electrical discharge machining (EDM),” International Journal of Machine Tools and Manufacture, vol. 47, no. 7–8, pp. 1214–1228, 2007.
-
[3] K. H. Ho and S. T. Newman, “State of the art electrical discharge machining (EDM),” International Journal of Machine Tools and Manufacture, vol. 43, no. 13, pp. 1287–1300, 2003.
-
[4] M. Dastagiri and A. Hemantha Kumar, “Experimental investigation of EDM parameters on stainless steel & En41b,” Procedia Engineering, vol. 97, pp. 1551-1564, 2014.
-
[5] K. Jarosz, P. Nieslony, and P. Löschner, “Investigation of the effect of process parameters on surface roughness in EDM machining of ORVAR® supreme die steel,” Lecture Notes in Mechanical Engineering, pp. 333–340, 2019.
-
[6] S. Sharif, W. Safiei, A. F. Mansor, M. H. M. Isa, and R. M. Saad, “Experimental study of electrical discharge machine (die sinking) on stainless steel 316L using design of experiment,” Procedia Manufacturing, vol. 2, pp. 147–152, 2015.
-
[7] A. Kalyon, “Experimental investigation of the machinability of AISI D2 cold work tool steel with electro discharge technique,” Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, vol. 3, no. 1, pp. 75–86, 2019.
-
[8] N. Ahmed, K. Ishfaq, M. Rafaqat, S. Pervaiz, S. Anwar, and B. Salah, “EDM of Ti-6Al-4V: electrode and polarity selection for minimum tool wear rate and overcut,” Materials and Manufacturing Processes, vol. 34, no. 7, pp. 769–778 2019.
-
[9] V. D. Patil, K. K., & Jadhav, “Study of machining parameters in EDM,” International Journal of Engineering Applied Sciences and Technology, vol. 4, no. 1, pp. 72–78, 2016.
-
[10] P. Kumar, S. Dewangan, and C. Pandey, “Analysis of surface integrity and dimensional accuracy in EDM of P91 steels,” Materials Today: Proceedings, vol. 33, pp. 5378–5383, 2020.
-
[11] H. N. Chiang and J. J. J. Wang, “An analysis of overcut variation and coupling effects of dimensional variable in EDM process,” The International Journal of Advanced Manufacturing Technology, vol. 55, no. 9, pp. 935–943, 2011.
-
[12] A. Moghanizadeh, “Reducing side overcut in EDM process by changing electrical field between tool and work piece,” The International Journal of Advanced Manufacturing Technology, vol. 90, no. 1, pp. 1035–1042, 2016.
-
[13] K. Ishfaq, M. Asad, M. Harris, A. Alfaify, S. Anwar, L. Lamberti, M.L. Scutaru, “EDM of Ti-6Al-4V under nano-graphene mixed dielectric: A detailed investigation on axial and radial dimensional overcuts,” Nanomaterials, vol. 12, pp. 432, 2022.
-
[14] S. Dewangan, S. Gangopadhyay, and C. K. Biswas, “Study of surface integrity and dimensional accuracy in edm using fuzzy topsis and sensitivity analysis,” Measurement, vol. 63, pp. 364–376, 2015.
-
[15] A. Das, S. Padhan, and S. Ranjan Das, “Analysis on hole overcut during micro-edm of inconel 718,” Materials Today: Proceedings, vol. 56, pp. 29-35, 2021.
-
[16] M. Y. Lin, C. C. Tsao, H. H. Huang, C. Y. Wu, and C. Y. Hsu, “Use of the grey-taguchi method to optimise the micro-electrical discharge machining (micro-EDM) of Ti-6Al-4V alloy,” International Journal of Computer Integrated Manufacturing, vol. 28, no. 6, pp. 569–576, 2015.
-
[17] V. J. Mathai, H. K. Dave, and K. P. Desai, “Analysis of dimensional inaccuracies in square cavities generated on Ti-6Al-4V using planetary edm,” International Journal of Materials and Product Technology, vol. 56, no. 1/2, pp. 108, 2018.
-
[18] V. K. Meena and M. S. Azad, “Grey relational analysis of micro-edm machining of ti-6Al-4V alloy,” Materials and Manufacturing Processes, vol. 27, no. 9, pp. 973–977, 2012.
-
[19] M. Akgün, B. Özlü, and F. Kara, “Effect of PVD-TiN and CVD-Al2O3 coatings on cutting force, surface roughness, cutting power, and temperature in hard turning of AISI H13 steel,” Journal of Materials Engineering and Performance, vol. 32, no. 3, pp. 1390–1401, 2023.
-
[20] B. Reddy Gunamgari, G. N. Kumar, and M. Kharub, “Cryogenic processing of AISI P20 tool steel: evaluation of mechanical properties and microstructure,” Materials Today, 2023.
-
[21] F. H. Cakir and F. Ceritbinmez, “Performance enhancement of brass edm electrodes with cryogenic treatment while machining the cold work steel AISI D2,” Surface Review and Letters, 2023.
-
[22] A. Cetin, G. Atali, C. Erden, and S. S. Ozkan, “Assessing the performance of state-of-the-art machine learning algorithms for predicting electro-erosion wear in cryogenic treated electrodes of mold steels,” Advanced Engineering Informatics, vol. 61, no. 102468, p. 102468, 2024.
-
[23] Ramesh, M. P. Jenarthanan, and B. Kanna, “Experimental investigation of powder-mixed electric discharge machining of AISI P20 steel using different powders and tool materials,” Multidiscipline Modeling in Materials and Structures, vol. 14, no. 3, pp. 549–566, 2018.
-
[24] S. Dewangan, G. Sukhwal, S. Naidu, L. Maheshwari, H. Surana, and A. R. Kulkarni, “Optimization of input parameters used for machining heat-treated 0.2%-C steel under the edm method,” Journal of The Institution of Engineers (India): Series D, pp. 1-17,2024.
-
[25] E. Nas, “Experimental and statistical investigation of electro-erosion machining performance of cryogenic treated hardened AISI H13 hot work tool steel,” Tribology International, vol. 193, no. 109453, p. 109453, 2024.
-
[26] B. Erman and A. Kalyon, “Multi objective optimization of parameters in EDM of Mirrax steel,” Materials and Manufacturing Processes, vol. 38, no. 7, pp. 848–858, 2023.
-
[27] A. Kalyon, “Taguchi method for optimizing tool wear rate and overcut in electro discharge machining” Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 18, pp. 471–480, 2022.
-
[28] A. Kalyon, “Optimization of surface roughness and material removal Rate for aluminum alloy by Taguchi technique in electro discharge machining” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 21, no. 62, pp. 595–605, 2019.
-
[29] G. Bedi̇r and E. Nas, “Investigation of electro-discharge driling performance of 32CRMOV12-10 steel” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 10, no. 5, pp. 1–9, 2022.
-
[30] R. Mahajan, H. Krishna, A. K. Singh, and R. K. Ghadai, “A review on copper and its alloys used as electrode in EDM,” IOP Conference Series: Materials Science and Engineering, vol. 377, p. 012183, 2018.
-
[31] D. Marelli, S. K. Singh, S. Nagari, and R. Subbiah, “Optimisation of machining parameters of wire-cut EDM on super alloy materials–A review,” Materials Today, vol. 26, pp. 1021–1027, 2020.
-
[32] A. Kalyon, “Optimization of machining parameters in sinking electrical discharge machine of caldie plastic mold tool steel,” Sadhana, vol. 45, no. 1, 2020.
-
[33] D. Sharma and S. S. Hiremath, “Review on tools and tool wear in edm,” Machining Science and Technology, vol. 25, no. 5, pp. 802–873, 2021.
-
[34] J. E. A. Qudeiri, A. Zaiout, A.-H. I. Mourad, M. H. Abidi, and A. Elkaseer, “Principles and characteristics of different edm processes in machining tool and die steels,” Applied Sciences, vol. 10, no. 6, p. 2082, 2020.
-
[35] M. N. Alam, A. N. Siddiquee, Z. A. Khan, and N. Z. Khan, “A comprehensive review on wire edm performance evaluation,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 236, no. 4, pp. 1724–1746, 2022.
-
[36] R. Singh, R. P. Singh, and R. Trehan, “State of the art in processing of shape memory alloys with electrical discharge machining: A review,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 235, no. 3, pp. 333–366, 2021.
DIN 1.2767 Takım Çeliğinin Elektro Erozyon Tekniği ile İşlenmesinde Yanal Açıklık Optimizasyonu
Year 2025,
Volume: 13 Issue: 1, 121 - 130, 30.01.2025
Abubaker Fatatit
,
Ali Kalyon
Abstract
Elektro erozyon ile işleme, hızlı elektrot aşınmasına ve boyutsal hatalara neden olabilecek enerji tabanlı bir işleme yöntemidir. Bu çalışma, bakır bazlı elektrotlar kullanarak 1.2767 çeliğini işlemek için optimum işlem parametrelerini belirlemeyi amaçlamıştır. Taguchi optimizasyon tekniği kullanılarak deneyler için 18 adet 1.2767 çeliğinden işparçası hazırlanmıştır. İşleme deneylerinde CuCoNiBe ve CuNi2SiCr elektrot kullanılmıştır ve elektrot yüzeyleri işlemeden önce zımparalanarak parlatılmıştır. Çalışma sonucunda CuNi2SiCr elektrot ile en düşük yanal açıklık değeri olan 0.07 mm, CuCoNiBe elektrod ile en yüksek yanal açıklık değeri olan 0.320 mm elde edilmiştir. Boşalım akımı, yanal açıklık üzerinde en önemli etkiye sahipken, elektrot tipi en az etkiye sahip parametre olmuştur. CuNi2SiCr elektrot için optimum işlem parametreleri 12 A boşalım akımı, 50 µs vurum süresi ve 800 µs bekleme süresi olarak belirlenmiştir. Optimum işleme şartında, yanal açıklık değeri 0.05 mm olarak elde edilmiştir.
References
-
[1] A. Kalyon, “Optimization of the machinability of aluminum 6082 alloy by brass
electrode” El-Cezeri, vol. 6, no. 1, pp. 118–130, 2019.
-
[2] N. Mohd Abbas, D. G. Solomon, and M. Fuad Bahari, “A review on current research trends in electrical discharge machining (EDM),” International Journal of Machine Tools and Manufacture, vol. 47, no. 7–8, pp. 1214–1228, 2007.
-
[3] K. H. Ho and S. T. Newman, “State of the art electrical discharge machining (EDM),” International Journal of Machine Tools and Manufacture, vol. 43, no. 13, pp. 1287–1300, 2003.
-
[4] M. Dastagiri and A. Hemantha Kumar, “Experimental investigation of EDM parameters on stainless steel & En41b,” Procedia Engineering, vol. 97, pp. 1551-1564, 2014.
-
[5] K. Jarosz, P. Nieslony, and P. Löschner, “Investigation of the effect of process parameters on surface roughness in EDM machining of ORVAR® supreme die steel,” Lecture Notes in Mechanical Engineering, pp. 333–340, 2019.
-
[6] S. Sharif, W. Safiei, A. F. Mansor, M. H. M. Isa, and R. M. Saad, “Experimental study of electrical discharge machine (die sinking) on stainless steel 316L using design of experiment,” Procedia Manufacturing, vol. 2, pp. 147–152, 2015.
-
[7] A. Kalyon, “Experimental investigation of the machinability of AISI D2 cold work tool steel with electro discharge technique,” Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, vol. 3, no. 1, pp. 75–86, 2019.
-
[8] N. Ahmed, K. Ishfaq, M. Rafaqat, S. Pervaiz, S. Anwar, and B. Salah, “EDM of Ti-6Al-4V: electrode and polarity selection for minimum tool wear rate and overcut,” Materials and Manufacturing Processes, vol. 34, no. 7, pp. 769–778 2019.
-
[9] V. D. Patil, K. K., & Jadhav, “Study of machining parameters in EDM,” International Journal of Engineering Applied Sciences and Technology, vol. 4, no. 1, pp. 72–78, 2016.
-
[10] P. Kumar, S. Dewangan, and C. Pandey, “Analysis of surface integrity and dimensional accuracy in EDM of P91 steels,” Materials Today: Proceedings, vol. 33, pp. 5378–5383, 2020.
-
[11] H. N. Chiang and J. J. J. Wang, “An analysis of overcut variation and coupling effects of dimensional variable in EDM process,” The International Journal of Advanced Manufacturing Technology, vol. 55, no. 9, pp. 935–943, 2011.
-
[12] A. Moghanizadeh, “Reducing side overcut in EDM process by changing electrical field between tool and work piece,” The International Journal of Advanced Manufacturing Technology, vol. 90, no. 1, pp. 1035–1042, 2016.
-
[13] K. Ishfaq, M. Asad, M. Harris, A. Alfaify, S. Anwar, L. Lamberti, M.L. Scutaru, “EDM of Ti-6Al-4V under nano-graphene mixed dielectric: A detailed investigation on axial and radial dimensional overcuts,” Nanomaterials, vol. 12, pp. 432, 2022.
-
[14] S. Dewangan, S. Gangopadhyay, and C. K. Biswas, “Study of surface integrity and dimensional accuracy in edm using fuzzy topsis and sensitivity analysis,” Measurement, vol. 63, pp. 364–376, 2015.
-
[15] A. Das, S. Padhan, and S. Ranjan Das, “Analysis on hole overcut during micro-edm of inconel 718,” Materials Today: Proceedings, vol. 56, pp. 29-35, 2021.
-
[16] M. Y. Lin, C. C. Tsao, H. H. Huang, C. Y. Wu, and C. Y. Hsu, “Use of the grey-taguchi method to optimise the micro-electrical discharge machining (micro-EDM) of Ti-6Al-4V alloy,” International Journal of Computer Integrated Manufacturing, vol. 28, no. 6, pp. 569–576, 2015.
-
[17] V. J. Mathai, H. K. Dave, and K. P. Desai, “Analysis of dimensional inaccuracies in square cavities generated on Ti-6Al-4V using planetary edm,” International Journal of Materials and Product Technology, vol. 56, no. 1/2, pp. 108, 2018.
-
[18] V. K. Meena and M. S. Azad, “Grey relational analysis of micro-edm machining of ti-6Al-4V alloy,” Materials and Manufacturing Processes, vol. 27, no. 9, pp. 973–977, 2012.
-
[19] M. Akgün, B. Özlü, and F. Kara, “Effect of PVD-TiN and CVD-Al2O3 coatings on cutting force, surface roughness, cutting power, and temperature in hard turning of AISI H13 steel,” Journal of Materials Engineering and Performance, vol. 32, no. 3, pp. 1390–1401, 2023.
-
[20] B. Reddy Gunamgari, G. N. Kumar, and M. Kharub, “Cryogenic processing of AISI P20 tool steel: evaluation of mechanical properties and microstructure,” Materials Today, 2023.
-
[21] F. H. Cakir and F. Ceritbinmez, “Performance enhancement of brass edm electrodes with cryogenic treatment while machining the cold work steel AISI D2,” Surface Review and Letters, 2023.
-
[22] A. Cetin, G. Atali, C. Erden, and S. S. Ozkan, “Assessing the performance of state-of-the-art machine learning algorithms for predicting electro-erosion wear in cryogenic treated electrodes of mold steels,” Advanced Engineering Informatics, vol. 61, no. 102468, p. 102468, 2024.
-
[23] Ramesh, M. P. Jenarthanan, and B. Kanna, “Experimental investigation of powder-mixed electric discharge machining of AISI P20 steel using different powders and tool materials,” Multidiscipline Modeling in Materials and Structures, vol. 14, no. 3, pp. 549–566, 2018.
-
[24] S. Dewangan, G. Sukhwal, S. Naidu, L. Maheshwari, H. Surana, and A. R. Kulkarni, “Optimization of input parameters used for machining heat-treated 0.2%-C steel under the edm method,” Journal of The Institution of Engineers (India): Series D, pp. 1-17,2024.
-
[25] E. Nas, “Experimental and statistical investigation of electro-erosion machining performance of cryogenic treated hardened AISI H13 hot work tool steel,” Tribology International, vol. 193, no. 109453, p. 109453, 2024.
-
[26] B. Erman and A. Kalyon, “Multi objective optimization of parameters in EDM of Mirrax steel,” Materials and Manufacturing Processes, vol. 38, no. 7, pp. 848–858, 2023.
-
[27] A. Kalyon, “Taguchi method for optimizing tool wear rate and overcut in electro discharge machining” Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 18, pp. 471–480, 2022.
-
[28] A. Kalyon, “Optimization of surface roughness and material removal Rate for aluminum alloy by Taguchi technique in electro discharge machining” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 21, no. 62, pp. 595–605, 2019.
-
[29] G. Bedi̇r and E. Nas, “Investigation of electro-discharge driling performance of 32CRMOV12-10 steel” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 10, no. 5, pp. 1–9, 2022.
-
[30] R. Mahajan, H. Krishna, A. K. Singh, and R. K. Ghadai, “A review on copper and its alloys used as electrode in EDM,” IOP Conference Series: Materials Science and Engineering, vol. 377, p. 012183, 2018.
-
[31] D. Marelli, S. K. Singh, S. Nagari, and R. Subbiah, “Optimisation of machining parameters of wire-cut EDM on super alloy materials–A review,” Materials Today, vol. 26, pp. 1021–1027, 2020.
-
[32] A. Kalyon, “Optimization of machining parameters in sinking electrical discharge machine of caldie plastic mold tool steel,” Sadhana, vol. 45, no. 1, 2020.
-
[33] D. Sharma and S. S. Hiremath, “Review on tools and tool wear in edm,” Machining Science and Technology, vol. 25, no. 5, pp. 802–873, 2021.
-
[34] J. E. A. Qudeiri, A. Zaiout, A.-H. I. Mourad, M. H. Abidi, and A. Elkaseer, “Principles and characteristics of different edm processes in machining tool and die steels,” Applied Sciences, vol. 10, no. 6, p. 2082, 2020.
-
[35] M. N. Alam, A. N. Siddiquee, Z. A. Khan, and N. Z. Khan, “A comprehensive review on wire edm performance evaluation,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 236, no. 4, pp. 1724–1746, 2022.
-
[36] R. Singh, R. P. Singh, and R. Trehan, “State of the art in processing of shape memory alloys with electrical discharge machining: A review,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 235, no. 3, pp. 333–366, 2021.