Research Article
BibTex RIS Cite

Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure using Ab initio Methods

Year 2025, Volume: 13 Issue: 2, 893 - 912, 30.04.2025
https://doi.org/10.29130/dubited.1618327

Abstract

The negative effects of pollution caused by electromagnetic radiation on human health and sensitive systems have reached serious dimensions. The most effective way to deal with this pollution is to create isolated areas with shielding materials. Especially after the discovery of graphene, studies on 2D materials continue to reveal the extraordinary structural, electronic and optical properties of 2D materials. Thanks to the research on the use of monolayer materials in electromagnetic shielding, ultra-thin and high-performance shielding materials are being obtained. In this study, the electromagnetic radiation shielding efficiency (SE) of a 2D film-structured material with a tetragonal crystal structure in the MBene class of the MXene family and obtained using Fe2B unit cells in the P4/mmm space group has been investigated using ab-initio methods. The electrical, optic and magnetic behavior of the material in the ground state is determined using the density functional theory (DFT) approach. The Curie temperature was investigated using the Monte Carlo method. The shielding efficiency of Fe2B has been investigated in the range of 31.558-123980 nm of the electromagnetic wave spectrum at [001], [010], [100] polarization states. Despite Fe2B 2D monolayer film structure, it showed a shielding performance (SET) of >20 dB. This study shows that Fe2B in film structure is a promising and exciting material for ultra-thin shielding material applications with its superior shielding performance at nanometer dimensions.

References

  • [1] Fizik D. Bor, (2015) "Radyasyon nedir?” Halkımız için bilgilendirme kılavuzu Ankara Üniversitesi Mühendisliği Bölümü [Çevrimiçi]. Erişim: content/upload/2016/09/RADYASYON NED%C4%BOR.pdf
  • [2] Y. E. Togay, "Radyasyon ve biz," Türkiye Atom Enerjisi Kurumu Yayınları, c. 2, s. 12, 2002.
  • [3] A. Türkkan, O. Çerezci ve K. Pala, Elektromanyetik Alan ve Sağlık Etkileri, Bursa, Türkiye: F. Özsan Matbaacılık, 2012.
  • [4] A. Balmori, "Electromagnetic pollution from phone masts. Effects on wildlife," Pathophysiology, vol. 16, no. 2-3, pp. 191-199, 2009.
  • [5] P. Bandara and D. O. Carpenter, "Planetary electromagnetic pollution: it is time to assess its impact," The Lancet Planetary Health, vol. 2, no. 12, pp. e512-e514, 2018.
  • [6] F. Çerezci, "K-means algoritması ile elektromanyetik kirlilik analizi," Bilgisayar ve Bilişim Mühendisliği, Yüksek lisans tezi, Sakarya Üniversitesi, Sakarya, Türkiye, 2015.
  • [7] G. Redlarski, B. Lewczuk, A. Zak, A. Koncicki, M. Krawczuk, J. Piechocki, K. Jakubiuk, P. Tojza, J. Jaworski, D. Ambroziak, L. Skarbek and D. Gradolewski "The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes," BioMed Research International, vol. 2015, no. 1, pp. 234098, 2015.
  • [8] O. Elmas, "Effects of electromagnetic field exposure on the heart: a systematic review," Toxicology and Industrial Health, vol. 32, no. 1, pp. 76-82, 2016.
  • [9] A. Ahlbom and M. Feychting, "Electromagnetic radiation: environmental pollution and health," British Medical Bulletin, vol. 68, no. 1, pp. 157-165, 2003.
  • [10] L. Cui, Y. Wang, X, Han, P. Xu, F. Wang, D. Liu, H. Zhao and Y. Du "Phenolic resin reinforcement: a new strategy for hollow NiCo@ C microboxes against electromagnetic pollution," Carbon, vol. 174, pp. 673-682, 2021.
  • [11] R. Yılmaz, "Elektromanyetik kalkanlama özelliği olan malzemeler," Electronic Journal of Vocational Colleges, vol. 4, no. 1, pp. 136-150, 2014.
  • [12] M. Altun, İ. Karteri, M. Güneş, and M. H. Alma, "Grafen katkılı odun-plastik nanokompozitlerinin elektromanyetik özellikleri ve elektromanyetik kalkanlama etkinliği karşılaştırmalı çalışması," Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, c. 20, s. 1, ss. 38-47, 2017.
  • [13] L. Chhaya, "EMR pollution-an imperceptible threat for safety," SSRN, 2165743, 2012.
  • [14] S. Ghosh, S. Ganguly, P. Das, T.K. Das, M. Bose, N.K. Singha, A.K. Das and N. Ch. Das, "Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application," Fibers and Polymers, vol. 20, pp. 1161-1171, 2019.
  • [15] A. Kaşgöz, "Elektromanyetik dalga kalkanlama özelliğine sahip polimer kompozitlerin geliştirilmesi ve yapı-performans ilişkilerinin incelenmesi," Doktora tezi, Kimya Mühendisliği Bölümü, İstanbul Üniversitesi, İstanbul, Türkiye, 2017.
  • [16] V. Shukla, "Review of electromagnetic interference shielding materials fabricated by iron ingredients," Nanoscale Advances, vol. 1, no. 5, pp. 1640-1671, 2019.
  • [17] E. Zornoza, G. Catalá, F. Jiménez, L. G. Andión, and P. Garcés, "Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash," Materiales de Construcción, vol. 60, no. 300, pp. 21-32, 2010.
  • [18] R. Çelen and Y. Ulcay, "Baryum Titanatin Tekstilde Elektromanyetik Kalkanlama Uygulamalarında KullanIMI," Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, s. 2, ss. 29-44, 2018.
  • [19] A. Iqbal, P. Sambyal, and C. M. Koo, "2D MXenes for electromagnetic shielding: a review," Advanced Functional Materials, vol. 30, no. 47, pp. 2000883, 2020.
  • [20] M. González, J. Pozuelo, and J. Baselga, "Electromagnetic shielding materials in GHz range," The Chemical Record, vol. 18, no. 7-8, pp. 1000-1009, 2018.
  • [21] P. Banerjee, Y. Bhattacharjee, and S. Bose, "Lightweight epoxy-based composites for EMI shielding applications," Journal of Electronic Materials, vol. 49, pp. 1702-1720, 2020.
  • [22] S. Geetha, K. Satheesh Kumar, C. R. Rao, M. Vijayan, and D. Trivedi, "EMI shielding: Methods and materials—A review," Journal of Applied Polymer Science, vol. 112, no. 4, pp. 2073 2086, 2009.
  • [23] H. W. Ott, Electromagnetic Compatibility Engineering, vol. 11, New Jersey, USA: John Wiley & Sons, 2011, pp. 423–459.
  • [24] H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X.Xu, D. Tomanek and P. D. Ye, "Phosphorene: an unexplored 2D semiconductor with a high hole mobility," ACS Nano, vol. 8, no. 4, pp. 4033-4041, 2014.
  • [25] B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, "2D metal carbides and nitrides (MXenes) for energy storage," in MXenes: Jenny Stanford Publishing, 2023, pp. 677-722.
  • [26] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi and M. W. Barsoum, "Two-dimensional transition metal carbides," ACS Nano, vol. 6, no. 2, pp. 1322-1331, 2012.
  • [27] Z. Jiang, P. Wang, X. Jiang, and J. Zhao, "MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature," Nanoscale Horizons, vol. 3, no. 3, pp. 335-341, 2018.
  • [28] T. Zhang, B. Zhang, Q. Peng, J. Zhou, and Z. Sun, "Mo 2 B 2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts," Journal of Materials Chemistry A, vol. 9, no. 1, pp. 433-441, 2021.
  • [29] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical Review Letters, vol. 77, no. 18, pp. 3865, 1996.
  • [30] B. Hammer, L. B. Hansen, and J. K. Nørskov, "Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals," Physical Review B, vol. 59, no. 11, pp. 7413, 1999.
  • [31] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M.C. Payne, "First principles methods using CASTEP," Zeitschrift Für Kristallographie-Crystalline Materials, vol. 220, no. 5-6, pp. 567-570, 2005.
  • [32] E. Engel and R. M. Dreizler, Density Functional Theory, vol. 2, 1st ed., Springer Vertag, Berlin: pp. 11-56, 2011.
  • [33] K. Momma and F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data," Journal of Applied Crystallography, vol. 44, no. 6, pp. 1272-1276, 2011.
  • [34] G. Kumar, Crystal Fıeld Theory: Analyzıng Molecular Structures and Propertıes, A Textbook of Objective Inorganic Chemistry, 2022 (Revised) ed. vol. 12, New Delhi India: Wisdom Pres, 2022, pp. 86-93.
  • [35] S. Singh, P. Tripathi, A. Bhatnagar, Ch. R. P. Patel, A. P. Singh, S. K. Dhawan, B. K. Gupta and O. N. Srivastava, "A highly porous, light weight 3D sponge like graphene aerogel for electromagnetic interference shielding applications," RSC Advances, vol. 5, no. 129, pp. 107083107087, 2015.
  • [36] L. Zhang, N. T. Alvarez, M. Zhang, M. Haase, R. Malik, D. Mast and V. Sahanov, "Preparation and characterization of graphene paper for electromagnetic interference shielding," Carbon, vol. 82, pp. 353-359, 2015.
  • [37] P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y.-H. Kim, and C. M. Koo, "Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness," Carbon, vol. 94, pp. 494-500, 2015.
  • [38] L Paliotta, G. D. Bellis, A. Tamburrano, F. Marra, A. Rinaldi, S.K. Balijepalli, S. Kaciulis and M. S. Sarto, "Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield," Carbon, vol. 89, pp. 260-271, 2015.
  • [39] X. Luo and D. Chung, "Electromagnetic interference shielding reaching 130 dB using flexible graphite," MRS Online Proceedings Library, vol. 445, pp. 235-238, 1996.
  • [40] B. Shen, W. Zhai, and W. Zheng, "Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding," Advanced Functional Materials, vol. 24, no. 28, pp. 4542-4548, 2014.
  • [41] A. Iqbal, F. Shahzad, K. Hantanasırısakul, M. Kım, J. Kwon, J. Hong, H. Kım, D. Kım, Y. Gogotsi and C. M. Koo, "Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene)," Science, vol. 369, no. 6502, pp. 446-450, 2020.
  • [42] M. Han, C. E. Shuck, R. Rakhmanov, D. Parchment, B. Anasorı, C. M. Koo, G. Friedman and Y. Gogotsi, "Beyond Ti3C2T x: MXenes for electromagnetic interference shielding," ACS Nano, vol. 14, no. 4, pp. 5008-5016, 2020.
  • [43] H. Wei, M. Wang, W. Zheng, Z. Jiang, and Y. Huang, "2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties," Ceramics International, vol. 46, no. 5, pp. 6199-6204, 2020.
  • [44] C. Xiang, R. Guo, S. Lin, S. Jiong, J. Lan, C. Wang, C. Cui, H. Xiao and Y. Zhang, "Lightweight and ultrathin TiO2-Ti3C2TX/graphene film with electromagnetic interference shielding," Chemical Engineering Journal, vol. 360, pp. 1158-1166, 2019.
  • [45] F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasorı, S. M. Hong, C. M. Koo and Y. Gogotsi, "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)," Science, vol. 353, no. 6304, pp. 1137-1140, 2016.
  • [46] Q. Wen, W. Zhou, J. Su, Y. Qing, F. Luo, and D. Zhu, "High performance electromagnetic interference shielding of lamellar MoSi2/glass composite coatings by plasma spraying," Journal of Alloys and Compounds, vol. 666, pp. 359-365, 2016.
  • [47] T. Zhou, H. Ni, Y. Wang, C. Wu, H. Zhang, J. Zhang, A. P. Tomsia, L. Jiang and Q, Cheng, "Ultratough graphene–black phosphorus films," Proceedings of the National Academy of Sciences, vol. 117, no. 16, pp. 8727-8735, 2020.
  • [48] X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo and Y. Wang, "Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: an ideal EMI shielding material with excellent electrical insulation and high thermal conductivity," Composites Science and Technology, vol. 136, pp. 104-110, 2016.

Tetragonal Kristal Yapıdaki Tek Katmanlı Demirborürün Elektromanyetik Kalkanlama Performansının Ab initio Yöntemler Kullanılarak İncelenmesi

Year 2025, Volume: 13 Issue: 2, 893 - 912, 30.04.2025
https://doi.org/10.29130/dubited.1618327

Abstract

Elektromanyetik radyasyonun neden olduğu kirliliğin insan sağlığı ve hassas sistemler üzerindeki olumsuz etkileri ciddi boyutlara ulaşmıştır. Bu kirlilik ile başa çıkabilmenin en etkili yolu kalkanlama malzemeleri ile izole edilmiş alanlar yaratmaktır. Özellikle grafenin keşfinden sonra 2D malzemeler üzerine yapılan çalışmalar ile 2D malzemelerin olağan üstü yapısal, elektronik ve optik özellikleri hale keşfedilmeye devam etmektedir. Monolayer malzemelerin elektromanyetik kalkanlama alanında kullanılması amacıyla yapılan araştırmalar sayesinde ultra ince ve yüksek performanslı kalkanlama malzemeleri elde edilmeye çalışılmaktadır. Bu çalışmada MXene ailesine ait MBene sınıfında bulunan tetragonal kristal yapıya sahip ve P4/mmm uzay grubunda bulunan Fe2B birim hücreleri kullanılarak elde edilmiş olan film yapılı 2D malzemenin elektromanyetik radyasyonu kalkanlama etkililiği (SE); ab-initio yöntemler kullanılarak araştırılmıştır. Malzemenin taban durumundaki elektriksel ve manyetik davranışı yoğunluk fonksiyonel teorisi (DFT) yaklaşımı kullanılarak belirlenmiştir. Curie sıcaklığı Monte Carlo Metodu kullanılarak araştırılmıştır. Fe2B’nin kalkanlama etkililiği elektromanyetik dalga spektrumunun 31.558-123980 nm aralığında [001], [010], [100] polarizasyon durumlarında incelenmiştir. Fe2B 2D monolayer film yapısına rağmen >20 dB seviyesinde kalkanlama performansı (SET) göstermiştir. Bu çalışma göstermiştir ki; film yapıdaki Fe2B, nanometre boyutlarındaki üstün kalkanlama performansı ile ultra ince kalkanlama malzemesi uygulamaları için umut ve heyecan verici bir malzemedir.

References

  • [1] Fizik D. Bor, (2015) "Radyasyon nedir?” Halkımız için bilgilendirme kılavuzu Ankara Üniversitesi Mühendisliği Bölümü [Çevrimiçi]. Erişim: content/upload/2016/09/RADYASYON NED%C4%BOR.pdf
  • [2] Y. E. Togay, "Radyasyon ve biz," Türkiye Atom Enerjisi Kurumu Yayınları, c. 2, s. 12, 2002.
  • [3] A. Türkkan, O. Çerezci ve K. Pala, Elektromanyetik Alan ve Sağlık Etkileri, Bursa, Türkiye: F. Özsan Matbaacılık, 2012.
  • [4] A. Balmori, "Electromagnetic pollution from phone masts. Effects on wildlife," Pathophysiology, vol. 16, no. 2-3, pp. 191-199, 2009.
  • [5] P. Bandara and D. O. Carpenter, "Planetary electromagnetic pollution: it is time to assess its impact," The Lancet Planetary Health, vol. 2, no. 12, pp. e512-e514, 2018.
  • [6] F. Çerezci, "K-means algoritması ile elektromanyetik kirlilik analizi," Bilgisayar ve Bilişim Mühendisliği, Yüksek lisans tezi, Sakarya Üniversitesi, Sakarya, Türkiye, 2015.
  • [7] G. Redlarski, B. Lewczuk, A. Zak, A. Koncicki, M. Krawczuk, J. Piechocki, K. Jakubiuk, P. Tojza, J. Jaworski, D. Ambroziak, L. Skarbek and D. Gradolewski "The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes," BioMed Research International, vol. 2015, no. 1, pp. 234098, 2015.
  • [8] O. Elmas, "Effects of electromagnetic field exposure on the heart: a systematic review," Toxicology and Industrial Health, vol. 32, no. 1, pp. 76-82, 2016.
  • [9] A. Ahlbom and M. Feychting, "Electromagnetic radiation: environmental pollution and health," British Medical Bulletin, vol. 68, no. 1, pp. 157-165, 2003.
  • [10] L. Cui, Y. Wang, X, Han, P. Xu, F. Wang, D. Liu, H. Zhao and Y. Du "Phenolic resin reinforcement: a new strategy for hollow NiCo@ C microboxes against electromagnetic pollution," Carbon, vol. 174, pp. 673-682, 2021.
  • [11] R. Yılmaz, "Elektromanyetik kalkanlama özelliği olan malzemeler," Electronic Journal of Vocational Colleges, vol. 4, no. 1, pp. 136-150, 2014.
  • [12] M. Altun, İ. Karteri, M. Güneş, and M. H. Alma, "Grafen katkılı odun-plastik nanokompozitlerinin elektromanyetik özellikleri ve elektromanyetik kalkanlama etkinliği karşılaştırmalı çalışması," Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, c. 20, s. 1, ss. 38-47, 2017.
  • [13] L. Chhaya, "EMR pollution-an imperceptible threat for safety," SSRN, 2165743, 2012.
  • [14] S. Ghosh, S. Ganguly, P. Das, T.K. Das, M. Bose, N.K. Singha, A.K. Das and N. Ch. Das, "Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application," Fibers and Polymers, vol. 20, pp. 1161-1171, 2019.
  • [15] A. Kaşgöz, "Elektromanyetik dalga kalkanlama özelliğine sahip polimer kompozitlerin geliştirilmesi ve yapı-performans ilişkilerinin incelenmesi," Doktora tezi, Kimya Mühendisliği Bölümü, İstanbul Üniversitesi, İstanbul, Türkiye, 2017.
  • [16] V. Shukla, "Review of electromagnetic interference shielding materials fabricated by iron ingredients," Nanoscale Advances, vol. 1, no. 5, pp. 1640-1671, 2019.
  • [17] E. Zornoza, G. Catalá, F. Jiménez, L. G. Andión, and P. Garcés, "Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash," Materiales de Construcción, vol. 60, no. 300, pp. 21-32, 2010.
  • [18] R. Çelen and Y. Ulcay, "Baryum Titanatin Tekstilde Elektromanyetik Kalkanlama Uygulamalarında KullanIMI," Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, s. 2, ss. 29-44, 2018.
  • [19] A. Iqbal, P. Sambyal, and C. M. Koo, "2D MXenes for electromagnetic shielding: a review," Advanced Functional Materials, vol. 30, no. 47, pp. 2000883, 2020.
  • [20] M. González, J. Pozuelo, and J. Baselga, "Electromagnetic shielding materials in GHz range," The Chemical Record, vol. 18, no. 7-8, pp. 1000-1009, 2018.
  • [21] P. Banerjee, Y. Bhattacharjee, and S. Bose, "Lightweight epoxy-based composites for EMI shielding applications," Journal of Electronic Materials, vol. 49, pp. 1702-1720, 2020.
  • [22] S. Geetha, K. Satheesh Kumar, C. R. Rao, M. Vijayan, and D. Trivedi, "EMI shielding: Methods and materials—A review," Journal of Applied Polymer Science, vol. 112, no. 4, pp. 2073 2086, 2009.
  • [23] H. W. Ott, Electromagnetic Compatibility Engineering, vol. 11, New Jersey, USA: John Wiley & Sons, 2011, pp. 423–459.
  • [24] H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X.Xu, D. Tomanek and P. D. Ye, "Phosphorene: an unexplored 2D semiconductor with a high hole mobility," ACS Nano, vol. 8, no. 4, pp. 4033-4041, 2014.
  • [25] B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, "2D metal carbides and nitrides (MXenes) for energy storage," in MXenes: Jenny Stanford Publishing, 2023, pp. 677-722.
  • [26] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi and M. W. Barsoum, "Two-dimensional transition metal carbides," ACS Nano, vol. 6, no. 2, pp. 1322-1331, 2012.
  • [27] Z. Jiang, P. Wang, X. Jiang, and J. Zhao, "MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature," Nanoscale Horizons, vol. 3, no. 3, pp. 335-341, 2018.
  • [28] T. Zhang, B. Zhang, Q. Peng, J. Zhou, and Z. Sun, "Mo 2 B 2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts," Journal of Materials Chemistry A, vol. 9, no. 1, pp. 433-441, 2021.
  • [29] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical Review Letters, vol. 77, no. 18, pp. 3865, 1996.
  • [30] B. Hammer, L. B. Hansen, and J. K. Nørskov, "Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals," Physical Review B, vol. 59, no. 11, pp. 7413, 1999.
  • [31] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M.C. Payne, "First principles methods using CASTEP," Zeitschrift Für Kristallographie-Crystalline Materials, vol. 220, no. 5-6, pp. 567-570, 2005.
  • [32] E. Engel and R. M. Dreizler, Density Functional Theory, vol. 2, 1st ed., Springer Vertag, Berlin: pp. 11-56, 2011.
  • [33] K. Momma and F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data," Journal of Applied Crystallography, vol. 44, no. 6, pp. 1272-1276, 2011.
  • [34] G. Kumar, Crystal Fıeld Theory: Analyzıng Molecular Structures and Propertıes, A Textbook of Objective Inorganic Chemistry, 2022 (Revised) ed. vol. 12, New Delhi India: Wisdom Pres, 2022, pp. 86-93.
  • [35] S. Singh, P. Tripathi, A. Bhatnagar, Ch. R. P. Patel, A. P. Singh, S. K. Dhawan, B. K. Gupta and O. N. Srivastava, "A highly porous, light weight 3D sponge like graphene aerogel for electromagnetic interference shielding applications," RSC Advances, vol. 5, no. 129, pp. 107083107087, 2015.
  • [36] L. Zhang, N. T. Alvarez, M. Zhang, M. Haase, R. Malik, D. Mast and V. Sahanov, "Preparation and characterization of graphene paper for electromagnetic interference shielding," Carbon, vol. 82, pp. 353-359, 2015.
  • [37] P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y.-H. Kim, and C. M. Koo, "Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness," Carbon, vol. 94, pp. 494-500, 2015.
  • [38] L Paliotta, G. D. Bellis, A. Tamburrano, F. Marra, A. Rinaldi, S.K. Balijepalli, S. Kaciulis and M. S. Sarto, "Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield," Carbon, vol. 89, pp. 260-271, 2015.
  • [39] X. Luo and D. Chung, "Electromagnetic interference shielding reaching 130 dB using flexible graphite," MRS Online Proceedings Library, vol. 445, pp. 235-238, 1996.
  • [40] B. Shen, W. Zhai, and W. Zheng, "Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding," Advanced Functional Materials, vol. 24, no. 28, pp. 4542-4548, 2014.
  • [41] A. Iqbal, F. Shahzad, K. Hantanasırısakul, M. Kım, J. Kwon, J. Hong, H. Kım, D. Kım, Y. Gogotsi and C. M. Koo, "Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene)," Science, vol. 369, no. 6502, pp. 446-450, 2020.
  • [42] M. Han, C. E. Shuck, R. Rakhmanov, D. Parchment, B. Anasorı, C. M. Koo, G. Friedman and Y. Gogotsi, "Beyond Ti3C2T x: MXenes for electromagnetic interference shielding," ACS Nano, vol. 14, no. 4, pp. 5008-5016, 2020.
  • [43] H. Wei, M. Wang, W. Zheng, Z. Jiang, and Y. Huang, "2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties," Ceramics International, vol. 46, no. 5, pp. 6199-6204, 2020.
  • [44] C. Xiang, R. Guo, S. Lin, S. Jiong, J. Lan, C. Wang, C. Cui, H. Xiao and Y. Zhang, "Lightweight and ultrathin TiO2-Ti3C2TX/graphene film with electromagnetic interference shielding," Chemical Engineering Journal, vol. 360, pp. 1158-1166, 2019.
  • [45] F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasorı, S. M. Hong, C. M. Koo and Y. Gogotsi, "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)," Science, vol. 353, no. 6304, pp. 1137-1140, 2016.
  • [46] Q. Wen, W. Zhou, J. Su, Y. Qing, F. Luo, and D. Zhu, "High performance electromagnetic interference shielding of lamellar MoSi2/glass composite coatings by plasma spraying," Journal of Alloys and Compounds, vol. 666, pp. 359-365, 2016.
  • [47] T. Zhou, H. Ni, Y. Wang, C. Wu, H. Zhang, J. Zhang, A. P. Tomsia, L. Jiang and Q, Cheng, "Ultratough graphene–black phosphorus films," Proceedings of the National Academy of Sciences, vol. 117, no. 16, pp. 8727-8735, 2020.
  • [48] X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo and Y. Wang, "Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: an ideal EMI shielding material with excellent electrical insulation and high thermal conductivity," Composites Science and Technology, vol. 136, pp. 104-110, 2016.
There are 48 citations in total.

Details

Primary Language English
Subjects General Physics
Journal Section Research Article
Authors

Hakan Üşenti 0009-0002-9352-8578

İzzet Paruğ Duru

Submission Date January 12, 2025
Acceptance Date February 24, 2025
Publication Date April 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Üşenti, H., & Duru, İ. P. (2025). Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure using Ab initio Methods. Duzce University Journal of Science and Technology, 13(2), 893-912. https://doi.org/10.29130/dubited.1618327
AMA Üşenti H, Duru İP. Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure using Ab initio Methods. DUBİTED. April 2025;13(2):893-912. doi:10.29130/dubited.1618327
Chicago Üşenti, Hakan, and İzzet Paruğ Duru. “Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure Using Ab Initio Methods”. Duzce University Journal of Science and Technology 13, no. 2 (April 2025): 893-912. https://doi.org/10.29130/dubited.1618327.
EndNote Üşenti H, Duru İP (April 1, 2025) Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure using Ab initio Methods. Duzce University Journal of Science and Technology 13 2 893–912.
IEEE H. Üşenti and İ. P. Duru, “Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure using Ab initio Methods”, DUBİTED, vol. 13, no. 2, pp. 893–912, 2025, doi: 10.29130/dubited.1618327.
ISNAD Üşenti, Hakan - Duru, İzzet Paruğ. “Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure Using Ab Initio Methods”. Duzce University Journal of Science and Technology 13/2 (April2025), 893-912. https://doi.org/10.29130/dubited.1618327.
JAMA Üşenti H, Duru İP. Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure using Ab initio Methods. DUBİTED. 2025;13:893–912.
MLA Üşenti, Hakan and İzzet Paruğ Duru. “Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure Using Ab Initio Methods”. Duzce University Journal of Science and Technology, vol. 13, no. 2, 2025, pp. 893-12, doi:10.29130/dubited.1618327.
Vancouver Üşenti H, Duru İP. Investigation of Electromagnetic Shielding Performance of Monolayer Ironboride in Tetragonal Crystal Structure using Ab initio Methods. DUBİTED. 2025;13(2):893-912.