Research Article
BibTex RIS Cite

Yem Fabrikalarında Yangın Anında İnsan Davranışının Modellenmesi: Hibrit Etmen Tabanlı ve Ayrık Olay Simülasyonu Yaklaşımı

Year 2025, Volume: 13 Issue: 3, 1137 - 1160, 31.07.2025
https://doi.org/10.29130/dubited.1649330

Abstract

Bu çalışma, yem fabrikalarında meydana gelebilecek yangın durumunda insan davranışlarının modellenmesi amacıyla hibrit etmen tabanlı ve ayrık olay simülasyonu yaklaşımlarını entegre eden yenilikçi bir model sunmaktadır. Model, bina yapı özellikleri, kaçış yolları, merdiven ve çıkış kapıları gibi fiziksel faktörlerin yanı sıra, çalışanlar ile ziyaretçilerin yangın anındaki farklı tepki ve davranış kalıplarını dikkate alarak, gerçekçi bir tahliye senaryosu ortaya koymaktadır. Simülasyon sonuçları, eğitimli personelin tahliye süreçlerini daha etkin bir biçimde yönetebildiğini; eğitimsiz ziyaretçilerin ise bilinç eksikliği ve yavaş tepki verme eğilimleri nedeniyle süreci olumsuz etkilediğini göstermektedir. Özellikle çift merdiven ve çift çıkış kombinasyonunun, bireylerin farklı yönlere dağılmasını sağlayarak sıkışma noktalarını minimize ettiği ve tahliye süresini belirgin biçimde kısalttığı tespit edilmiştir. Hibrit model, yangın anında bireysel karar alma mekanizmalarını, panik durumlarını ve iletişim ağlarını da simülasyona entegre ederek, klasik modellerin ötesinde dinamik ve çok boyutlu bir analiz sunmaktadır. Elde edilen bulgular, yangın güvenliği planlamalarında insan davranışının ve yapısal unsurların birlikte ele alınmasının kritik önem taşıdığını ortaya koymakta; aynı zamanda yüksek ve karmaşık yapılar için ek önlemlerin gerekliliğine işaret etmektedir. Geliştirilen model, yangın anında tahliye süreçlerinin optimize edilmesine yönelik stratejilerin belirlenmesinde değerli bir araç olarak kullanılabilir.

References

  • [1] H. Fang, S. Lo and J. Lo, “Building fire evacuation: an IoT-Aided perspective in the 5G era,” Buildings, vol. 11, 2021, Art. no. 643.
  • [2] E. E. Layık, “Gıda sektöründe toz patlamalarında araştırılması ve patlamadan korunma dökümanının hazırlanması bir uygulama örneği,” İş Sağlığı ve Güvenliği Uzmanlık Tezi, T.C. Çalışma ve Sosyal Güvenlik Bakanlığı, İş Sağlığı ve Güvenliği Genel Müdürlüğü, Ankara, 2016.
  • [3] R. B. Jevtic, “Fire and evacuation in high residental buildings,” Working and Living Environmental Protection, vol. 15, no. 2, pp. 123-134, 2018.
  • [4] R. Singhal, L. Choudhary, A. Sarawagi and M. Makkar, "Effective Evacuation Planning by Leveraging Building Information," in 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1-6.
  • [5] M. Satır and T. Topraklı, “A review of design parameters for safe evacuation in high-rise buildings,” Journal of Science, vol. 8, no. 1, pp. 553–563, 2020.
  • [6] S. M. V. Gwynne and E. R. Rosenbaum, “Employing the hydraulic model in assessing emergency movement,” in SFPE Handbook of Fire Protection Engineering, M. Hurley, Ed., 5th ed. Quincy, MA, USA: National Fire Protection Association, 2016, pp. 2115–2151.
  • [7] M. Marzouk and B. Mohamed, “Multi-criteria ranking tool for evaluating buildings evacuation using agent-based simulation,” in Construction Research Congress, New Orleans, Louisiana, USA, 2018, pp. 472-481.
  • [8] C. Wang and W. Weng, “Study on evacuation characteristics in an ultra high-rise building with social force model,” in IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), China, 2014, pp. 8–11.
  • [9] S. Kasereka, N. Kasoro and K. Kyamakya, “Agent-based modelling and simulation for evacuation of people from a building in case of fire,” Procedia Computer Science, vol. 130, pp. 10–17, 2018.
  • [10] V. A. Oven and N. Cakici, “Modelling the evacuation of a high-rise office building in Istanbul,” Fire Safety Journal, vol. 44, pp. 1–15, 2009.
  • [11] N. Wang, Y. Gao, C. Li and W. Gair, “Integrated agent-based simulation and evacuation risk-assessment model for underground building fire: A case study,” Journal of Building Engineering, vol. 40, 2021, Art. no. pp. 102609.
  • [12] Z. Mao, H. Chen, X. Chen and L. Zhang, “Improved reliability analysis and assessment method of occupant evacuation and its application in building fires,” Safety Science, vol. 181, early access, Jan. 1, 2025, Art. no. 106689.
  • [13] Binaların Yangından Korunması Hakkında Yönetmelik (BYKHY), T. C. Resmî Gazete, Sayı: 47, 19 December 2007. [Online]. Available: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=200712937&MevzuatTur=21&MevzuatTertip=5.
  • [14] AnyLogic, “Pedestrian Library,” Accessed: Feb. 10, 2025. [Online]. Available: https://www.anylogic.com/features/libraries/pedestrian-library/.
  • [15] Y. Turgut, “Acil durumlarda yaya tahliyesi için grup davranışı içeren sosyal kuvvet modeli önerisi,” Yüksek Lisans Tezi, Endüstri Mühendisliği Anabilim Dalı, İstanbul Teknik Üniversitesi, İstanbul, 2017.
  • [16] S. Yeo and Y. He, “Computer characteristics in mass rapid transit stations in Singapore,” Fire Safety Journal, vol. 44, pp. 183–191, 2009.
  • [17] Z. Li, S. Qui, X. Wang and L. Zhao, “Modelling and simulation of crowd pre-evacuation decision-making in complex traffic environments,” International Journal of Environmental Research and Public Health, vol. 19, 2022, Art. no. 16664.
  • [18] M. Spearpoint, “The effect of pre-movement on evacuation times in a simulation model,” Journal of Fire Protection Engineering, vol. 14, pp. 33–53, 2003.
  • [19] C. Lin and M. E. Wu, “A study of evaluation an evacuation time,” Advances in Mechanical Engineering, vol. 10, no. 4, pp. 1–11, 2018.
  • [20] T. R. Roan, “Developing an agent-based evacuation simulation model based on the study of human behaviour in fire investigation reports,” PhD Thesis, Department of Civil, Environmental and Geomatic Engineering, University College London, 2013.
  • [21] G. Benčat and A. Janota, “Road traffic modelling based on the hybrid modelling tool AnyLogic,” Journal of Civil Engineering and Transport, vol. 2, no. 2, pp. 73-89, 2020.
  • [22] M. Fakhimi, A. Anagnostou, L. Stergioulas and S. J. E. Taylor, "A hybrid agent-based and Discrete Event Simulation approach for sustainable strategic planning and simulation analytics," in WSC’14: Proceedings of the Winter Simulation Conference, Savannah, GA, USA, 2014, pp. 1573-1584.
  • [23] C. Macal and M. North, "Introductory tutorial: Agent-based modeling and simulation," in WSC’14: Proceedings of the Winter Simulation Conference, Savannah, GA, USA, 2014, pp. 6-20.
  • [24] Y. Tendeloo, R. Paredis and H. Vangheluwe, “An introduction to discrete-event modeling and simulation with devs,” in WSC’23: Proceedings of the Winter Simulation Conference, San Antonio, Texas, USA, 2023, pp. 1531–1545.
  • [25] M. Kinateder, E. Kuligowski, P. Reneke and R. Peacock, “Risk perception in fire evacuation behavior revisited: definitions, related concepts and emirical evidence,” Fire Science Reviews, vol. 4, 2015, Art. no. 1.
  • [26] AnyLogic.com, “Density Map,” Accessed: Feb. 10, 2025. [Online]. Available: https://anylogic.help/markup/densitymap.html.
  • [27] Y. Chen, X. Zhou, T. Zhang, Y. Hu and L. Yang, “Turbulent smoke flow in evacuation stairwells during a high-rise residential building fire,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 25, pp. 534–549, 2015.
  • [28] Q. He, O. A. Ezekoye, B. Tubbs and C. Baldassarra, “CFD simulation of smoke spread through elevator shafts during fires in high-rise buildings,” in Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 8A: Heat Transfer and Thermal Engineering, Houston, Texas, USA, 2015.
  • [29] V. Kodur, A. Jha and N. Lajnef, “Critical egress parameters governing assisted evacuation in hospital buildings,” Fire, vol. 7, no. 3, 2024, Art. no. 85.
  • [30] G. Han, T.-Y. Kim and K.H. Lee, “A study on the evacuation performance according to variation in remoteness between exit stairways in tall buildings,” Architectural Research, vol. 22, no. 2, pp. 53-61, 2020.
  • [31] Q. Deng et al, “Evacuation time estimation model in large buildings based on individual characteristics and real-time congestion simulation of evacuation exit,” Fire, vol. 5, 2022, Art. no. 204.
  • [32] W. Jirasingha and S. Patvichaichod, “Modeling fire evacuation of a library building based on the numerical simulation,” American Journal of Applied Sciences, vol. 8, pp. 452–458, 2011. [33] O. Theimer, “Cause and prevention of dust explosions in grain elevators and flour mills,” Powder Technology, vol. 8, pp. 137–147, 1973.

Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach

Year 2025, Volume: 13 Issue: 3, 1137 - 1160, 31.07.2025
https://doi.org/10.29130/dubited.1649330

Abstract

This paper presents an innovative model that integrates hybrid agent-based and discrete event simulation approaches to model human behavior during fire incidents in animal feed factories. The model takes into account both physical factors—such as building structure, escape routes, stairwells, and exit doors—and the distinct behavioral responses and decision-making patterns of employees and visitors during an emergency, thereby creating a realistic evacuation scenario. Simulation results demonstrate that trained personnel can manage evacuation processes more effectively, whereas untrained visitors negatively impact the process due to slower reaction times and a lack of situational awareness. Notably, the combination of dual stairwells and dual exits was found to minimize bottlenecks by allowing individuals to disperse in different directions, significantly reducing evacuation times. The hybrid model further incorporates individual decision-making mechanisms, panic responses, and communication networks into the simulation, offering a dynamic and multidimensional analysis that extends beyond traditional models. The findings underscore the critical importance of addressing both human behavior and structural factors in fire safety planning, while also highlighting the need for additional precautions in taller and more complex structures. Overall, the developed model serves as a valuable tool for formulating strategies aimed at optimizing evacuation processes during fire emergencies.

References

  • [1] H. Fang, S. Lo and J. Lo, “Building fire evacuation: an IoT-Aided perspective in the 5G era,” Buildings, vol. 11, 2021, Art. no. 643.
  • [2] E. E. Layık, “Gıda sektöründe toz patlamalarında araştırılması ve patlamadan korunma dökümanının hazırlanması bir uygulama örneği,” İş Sağlığı ve Güvenliği Uzmanlık Tezi, T.C. Çalışma ve Sosyal Güvenlik Bakanlığı, İş Sağlığı ve Güvenliği Genel Müdürlüğü, Ankara, 2016.
  • [3] R. B. Jevtic, “Fire and evacuation in high residental buildings,” Working and Living Environmental Protection, vol. 15, no. 2, pp. 123-134, 2018.
  • [4] R. Singhal, L. Choudhary, A. Sarawagi and M. Makkar, "Effective Evacuation Planning by Leveraging Building Information," in 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1-6.
  • [5] M. Satır and T. Topraklı, “A review of design parameters for safe evacuation in high-rise buildings,” Journal of Science, vol. 8, no. 1, pp. 553–563, 2020.
  • [6] S. M. V. Gwynne and E. R. Rosenbaum, “Employing the hydraulic model in assessing emergency movement,” in SFPE Handbook of Fire Protection Engineering, M. Hurley, Ed., 5th ed. Quincy, MA, USA: National Fire Protection Association, 2016, pp. 2115–2151.
  • [7] M. Marzouk and B. Mohamed, “Multi-criteria ranking tool for evaluating buildings evacuation using agent-based simulation,” in Construction Research Congress, New Orleans, Louisiana, USA, 2018, pp. 472-481.
  • [8] C. Wang and W. Weng, “Study on evacuation characteristics in an ultra high-rise building with social force model,” in IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), China, 2014, pp. 8–11.
  • [9] S. Kasereka, N. Kasoro and K. Kyamakya, “Agent-based modelling and simulation for evacuation of people from a building in case of fire,” Procedia Computer Science, vol. 130, pp. 10–17, 2018.
  • [10] V. A. Oven and N. Cakici, “Modelling the evacuation of a high-rise office building in Istanbul,” Fire Safety Journal, vol. 44, pp. 1–15, 2009.
  • [11] N. Wang, Y. Gao, C. Li and W. Gair, “Integrated agent-based simulation and evacuation risk-assessment model for underground building fire: A case study,” Journal of Building Engineering, vol. 40, 2021, Art. no. pp. 102609.
  • [12] Z. Mao, H. Chen, X. Chen and L. Zhang, “Improved reliability analysis and assessment method of occupant evacuation and its application in building fires,” Safety Science, vol. 181, early access, Jan. 1, 2025, Art. no. 106689.
  • [13] Binaların Yangından Korunması Hakkında Yönetmelik (BYKHY), T. C. Resmî Gazete, Sayı: 47, 19 December 2007. [Online]. Available: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=200712937&MevzuatTur=21&MevzuatTertip=5.
  • [14] AnyLogic, “Pedestrian Library,” Accessed: Feb. 10, 2025. [Online]. Available: https://www.anylogic.com/features/libraries/pedestrian-library/.
  • [15] Y. Turgut, “Acil durumlarda yaya tahliyesi için grup davranışı içeren sosyal kuvvet modeli önerisi,” Yüksek Lisans Tezi, Endüstri Mühendisliği Anabilim Dalı, İstanbul Teknik Üniversitesi, İstanbul, 2017.
  • [16] S. Yeo and Y. He, “Computer characteristics in mass rapid transit stations in Singapore,” Fire Safety Journal, vol. 44, pp. 183–191, 2009.
  • [17] Z. Li, S. Qui, X. Wang and L. Zhao, “Modelling and simulation of crowd pre-evacuation decision-making in complex traffic environments,” International Journal of Environmental Research and Public Health, vol. 19, 2022, Art. no. 16664.
  • [18] M. Spearpoint, “The effect of pre-movement on evacuation times in a simulation model,” Journal of Fire Protection Engineering, vol. 14, pp. 33–53, 2003.
  • [19] C. Lin and M. E. Wu, “A study of evaluation an evacuation time,” Advances in Mechanical Engineering, vol. 10, no. 4, pp. 1–11, 2018.
  • [20] T. R. Roan, “Developing an agent-based evacuation simulation model based on the study of human behaviour in fire investigation reports,” PhD Thesis, Department of Civil, Environmental and Geomatic Engineering, University College London, 2013.
  • [21] G. Benčat and A. Janota, “Road traffic modelling based on the hybrid modelling tool AnyLogic,” Journal of Civil Engineering and Transport, vol. 2, no. 2, pp. 73-89, 2020.
  • [22] M. Fakhimi, A. Anagnostou, L. Stergioulas and S. J. E. Taylor, "A hybrid agent-based and Discrete Event Simulation approach for sustainable strategic planning and simulation analytics," in WSC’14: Proceedings of the Winter Simulation Conference, Savannah, GA, USA, 2014, pp. 1573-1584.
  • [23] C. Macal and M. North, "Introductory tutorial: Agent-based modeling and simulation," in WSC’14: Proceedings of the Winter Simulation Conference, Savannah, GA, USA, 2014, pp. 6-20.
  • [24] Y. Tendeloo, R. Paredis and H. Vangheluwe, “An introduction to discrete-event modeling and simulation with devs,” in WSC’23: Proceedings of the Winter Simulation Conference, San Antonio, Texas, USA, 2023, pp. 1531–1545.
  • [25] M. Kinateder, E. Kuligowski, P. Reneke and R. Peacock, “Risk perception in fire evacuation behavior revisited: definitions, related concepts and emirical evidence,” Fire Science Reviews, vol. 4, 2015, Art. no. 1.
  • [26] AnyLogic.com, “Density Map,” Accessed: Feb. 10, 2025. [Online]. Available: https://anylogic.help/markup/densitymap.html.
  • [27] Y. Chen, X. Zhou, T. Zhang, Y. Hu and L. Yang, “Turbulent smoke flow in evacuation stairwells during a high-rise residential building fire,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 25, pp. 534–549, 2015.
  • [28] Q. He, O. A. Ezekoye, B. Tubbs and C. Baldassarra, “CFD simulation of smoke spread through elevator shafts during fires in high-rise buildings,” in Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 8A: Heat Transfer and Thermal Engineering, Houston, Texas, USA, 2015.
  • [29] V. Kodur, A. Jha and N. Lajnef, “Critical egress parameters governing assisted evacuation in hospital buildings,” Fire, vol. 7, no. 3, 2024, Art. no. 85.
  • [30] G. Han, T.-Y. Kim and K.H. Lee, “A study on the evacuation performance according to variation in remoteness between exit stairways in tall buildings,” Architectural Research, vol. 22, no. 2, pp. 53-61, 2020.
  • [31] Q. Deng et al, “Evacuation time estimation model in large buildings based on individual characteristics and real-time congestion simulation of evacuation exit,” Fire, vol. 5, 2022, Art. no. 204.
  • [32] W. Jirasingha and S. Patvichaichod, “Modeling fire evacuation of a library building based on the numerical simulation,” American Journal of Applied Sciences, vol. 8, pp. 452–458, 2011. [33] O. Theimer, “Cause and prevention of dust explosions in grain elevators and flour mills,” Powder Technology, vol. 8, pp. 137–147, 1973.
There are 32 citations in total.

Details

Primary Language English
Subjects Health and Ecological Risk Assessment, Fire Safety Engineering
Journal Section Research Article
Authors

Betül Ulu 0000-0001-9158-5187

Deniz Efendioğlu 0000-0002-3710-9187

Submission Date March 1, 2025
Acceptance Date May 4, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Ulu, B., & Efendioğlu, D. (2025). Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach. Duzce University Journal of Science and Technology, 13(3), 1137-1160. https://doi.org/10.29130/dubited.1649330
AMA Ulu B, Efendioğlu D. Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach. DUBİTED. July 2025;13(3):1137-1160. doi:10.29130/dubited.1649330
Chicago Ulu, Betül, and Deniz Efendioğlu. “Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach”. Duzce University Journal of Science and Technology 13, no. 3 (July 2025): 1137-60. https://doi.org/10.29130/dubited.1649330.
EndNote Ulu B, Efendioğlu D (July 1, 2025) Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach. Duzce University Journal of Science and Technology 13 3 1137–1160.
IEEE B. Ulu and D. Efendioğlu, “Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach”, DUBİTED, vol. 13, no. 3, pp. 1137–1160, 2025, doi: 10.29130/dubited.1649330.
ISNAD Ulu, Betül - Efendioğlu, Deniz. “Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach”. Duzce University Journal of Science and Technology 13/3 (July2025), 1137-1160. https://doi.org/10.29130/dubited.1649330.
JAMA Ulu B, Efendioğlu D. Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach. DUBİTED. 2025;13:1137–1160.
MLA Ulu, Betül and Deniz Efendioğlu. “Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach”. Duzce University Journal of Science and Technology, vol. 13, no. 3, 2025, pp. 1137-60, doi:10.29130/dubited.1649330.
Vancouver Ulu B, Efendioğlu D. Modeling Human Behavior During Fire in Feed Mills: A Hybrid Agent-Based and Discrete Event Simulation Approach. DUBİTED. 2025;13(3):1137-60.