Research Article
BibTex RIS Cite

Hızlandırıcı Sürücülü Sistemlerde MOX ve Toryum Dioksit Yakıtlarının Performans Analizi

Year 2025, Volume: 13 Issue: 3, 1289 - 1296, 31.07.2025
https://doi.org/10.29130/dubited.1662715

Abstract

Hızlandırıcı sürücülü sistemler (HSS), yüksek enerjiye sahip parçacık demetlerini kullanarak tıbbi
radyoizotop üretimi, nükleer atık dönüşümü temiz enerji üretimi gibi alanlarda yenilikçi çözümler ortaya
koyan sistemlerdir. HSS’ler gelecekte sağlık ve enerji alanlarındaki problemlerin çözümlenmesinde
önemli bir rol oynayacaktır. Çalışmada, HSS’in yakıt bölgesine plütonyum dioksit (PuO2) ve toryum
dioksit (ThO2) yakıtları farklı oranlarda karıştırılarak konulmuştur. Buradaki PuO2 yakıtı termal
reaktörlerden atık olarak ortaya çıkan MOX yakıtı içerisinden alınmıştır. Sisteme konulan diğer yakıt
türü toryum ise, HSS’in hedef bölgesinden açığa çıkan nötronlarla reaksiyona girerek 233U izotopuna
dönüşmekte ve bu süreç de enerji üretimine katkıda bulunmaktadır. Böylelikle termal reaktörlerin çalışması sonucu açığa çıkan atıklar, Hızlandırıcı Sürücülü Sistemlerde (HSS) yeniden değerlendirilerek
hem çevresel zararın azaltılmasına hem de sistemin ek enerji üretimine katkı sağlamaktadır. HSS’in
verimli bir şekilde çalışmasında önemli bir parametre olan nötron çoğaltma faktörü 0.98 civarında
tutulmuştur. Nötronik analizlerin gerçekleştirilmesinde MCNPX 2.7 ve onunla entegre bir şekilde
çalışan CINDER 90 programlarından faydalanılmıştır.

References

  • [1] G. P. Barros, C. Pereira, M. A. F. Veloso and A. L. Costa, “Thorium and reprocessed fuel utilization in an accelerator-driven system,” Annals of Nuclear Energy, vol. 80, pp. 14–20, 2015.
  • [2] G. P. Barros, C. Pereira, M. A. F. Veloso and A. L. Costa, “Study of an ADS loaded with thorium and reprocessed fuel,” Science and Technology of Nuclear Installations, vol. 2012, 2012, Art. no. 934105.
  • [3] T. M. Vu and T. Kitada, “Transmutation strategy using thorium-reprocessed fuel ADS for future reactors in Vietnam,” Science and Technology of Nuclear Installations, vol. 2013, 2013, Art. no. 674638.
  • [4] A. Abánades and A. Pérez-Navarro, “Engineering design studies for the transmutation of nuclear wastes with a gas-cooled pebble-bed ADS,” Nuclear Engineering and Design, vol. 237, no. 3, pp. 325–333, 2007.
  • [5] K. Tsujimoto, T. Sasa, K. Nishihara, H. Oigawa and H. Takano, “Neutronics design for leadbismuth cooled accelerator-driven system for transmutation of minor actinide,” Journal of Nuclear Science and Technology, vol. 41, no. 1, pp. 21–36, 2004.
  • [6] H. Yapıcı, G. Genç and N. Demir, “Neutronic limits in infinite target mediums driven by high energetic protons,” Annals of Nuclear Energy, vol. 34, no. 5, pp. 374–384, 2007.
  • [7] G. Bakır, B. S. Selçuklu, G. Genç and H. Yapıcı, “Neutronic analysis of LBE–uranium spallation target accelerator driven system loaded with uranium dioxide in TRISO particles,” Acta Physica Polonica A, vol. 129, no. 1, pp. 30–32, 2016.
  • [8] C. H. Cho, T. Y. Song and N. I. Tak, “Numerical design of a 20 MW lead–bismuth spallation target for an accelerator-driven system,” Nuclear Engineering and Design, vol. 229, no. 2–3, pp. 317– 327, 2004.
  • [9] S. Şahin, K. Yıldız, H. M. Şahin and A. Acır, “Investigation of CANDU reactors as a thorium burner,” Energy Conversion and Management, vol. 47, no. 13–14, pp. 1661–1675, 2006.
  • [10] A. M. Attom, J. Wang, J. Huang, C. Yan and M. Ding, “Comparison of homogeneous and heterogeneous thorium fuel blocks with four drivers in advanced high temperature reactors,” International Journal of Energy Research, vol. 44, no. 7, pp. 5713–5729, 2020.
  • [11] C. García et al., “Evaluation of uranium–thorium and plutonium–thorium fuel cycles in a very high temperature hybrid system,” Progress in Nuclear Energy, vol. 66, pp. 61–72, 2013.
  • [12] H. Ding, G. Quan, L. Hao, J. Song and W. Yican, “Verification and application of SuperMC3.3 to lead–bismuth-cooled fast reactor,” Nuclear Technology and Radiation Protection, vol. 34, no. 2, pp. 122–128, 2019.
  • [13] A. B. Arslan, I. Yılmaz, G. Bakır and H. Yapıcı, “Transmutations of long-lived and medium-lived fission products extracted from CANDU and PWR spent fuels in an accelerator-driven system,” Science and Technology of Nuclear Installations, vol. 2019, 2019, Art. no. 4930274.
  • [14] D. B. Pelowitz, et al. MCNPXTM User's Manual, Version 2.7.0. Los Alamos National Laboratory Tech. Rep. LA-CP-11-00438. Los Alamos, NM, USA, 2011.
  • [15] W. B. Wilson, S. T. Cowell, T. R. England, A. C. Hayes and P. Moller, “A manual for CINDER'90 Version 07.4 codes and data,” Los Alamos National Laboratory report LA-UR-07-8412, Version 07.4.2, 2008.

Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems

Year 2025, Volume: 13 Issue: 3, 1289 - 1296, 31.07.2025
https://doi.org/10.29130/dubited.1662715

Abstract

Accelerator-Driven Systems (ADS) utilize high-energy particle beams to provide innovative solutions
in fields such as medical radioisotope production, nuclear waste transmutation, and clean energy
generation. ADS is expected to play a significant role in solving future challenges in healthcare and
energy. In this study, plutonium dioxide (PuO2) and thorium dioxide (ThO2) fuels were mixed in
different ratios and placed in the fuel region of the ADS. The PuO₂ fuel used in this system was extracted
from MOX fuel, which is a byproduct of thermal reactors. The other fuel type, thorium, reacts with
neutrons released from the target region of the ADS, converting into uranium-233 (233U), which
contributes to energy production. Thus, waste generated by thermal reactors is reutilized in Accelerator-
Driven Systems (ADS), reducing environmental harm while also contributing to additional energy
production. The neutron multiplication factor, a crucial parameter for the efficient operation of ADS,
was maintained at approximately 0.98. Neutronic analyses were performed using the MCNPX 2.7 code
and its integrated CINDER 90 program.

References

  • [1] G. P. Barros, C. Pereira, M. A. F. Veloso and A. L. Costa, “Thorium and reprocessed fuel utilization in an accelerator-driven system,” Annals of Nuclear Energy, vol. 80, pp. 14–20, 2015.
  • [2] G. P. Barros, C. Pereira, M. A. F. Veloso and A. L. Costa, “Study of an ADS loaded with thorium and reprocessed fuel,” Science and Technology of Nuclear Installations, vol. 2012, 2012, Art. no. 934105.
  • [3] T. M. Vu and T. Kitada, “Transmutation strategy using thorium-reprocessed fuel ADS for future reactors in Vietnam,” Science and Technology of Nuclear Installations, vol. 2013, 2013, Art. no. 674638.
  • [4] A. Abánades and A. Pérez-Navarro, “Engineering design studies for the transmutation of nuclear wastes with a gas-cooled pebble-bed ADS,” Nuclear Engineering and Design, vol. 237, no. 3, pp. 325–333, 2007.
  • [5] K. Tsujimoto, T. Sasa, K. Nishihara, H. Oigawa and H. Takano, “Neutronics design for leadbismuth cooled accelerator-driven system for transmutation of minor actinide,” Journal of Nuclear Science and Technology, vol. 41, no. 1, pp. 21–36, 2004.
  • [6] H. Yapıcı, G. Genç and N. Demir, “Neutronic limits in infinite target mediums driven by high energetic protons,” Annals of Nuclear Energy, vol. 34, no. 5, pp. 374–384, 2007.
  • [7] G. Bakır, B. S. Selçuklu, G. Genç and H. Yapıcı, “Neutronic analysis of LBE–uranium spallation target accelerator driven system loaded with uranium dioxide in TRISO particles,” Acta Physica Polonica A, vol. 129, no. 1, pp. 30–32, 2016.
  • [8] C. H. Cho, T. Y. Song and N. I. Tak, “Numerical design of a 20 MW lead–bismuth spallation target for an accelerator-driven system,” Nuclear Engineering and Design, vol. 229, no. 2–3, pp. 317– 327, 2004.
  • [9] S. Şahin, K. Yıldız, H. M. Şahin and A. Acır, “Investigation of CANDU reactors as a thorium burner,” Energy Conversion and Management, vol. 47, no. 13–14, pp. 1661–1675, 2006.
  • [10] A. M. Attom, J. Wang, J. Huang, C. Yan and M. Ding, “Comparison of homogeneous and heterogeneous thorium fuel blocks with four drivers in advanced high temperature reactors,” International Journal of Energy Research, vol. 44, no. 7, pp. 5713–5729, 2020.
  • [11] C. García et al., “Evaluation of uranium–thorium and plutonium–thorium fuel cycles in a very high temperature hybrid system,” Progress in Nuclear Energy, vol. 66, pp. 61–72, 2013.
  • [12] H. Ding, G. Quan, L. Hao, J. Song and W. Yican, “Verification and application of SuperMC3.3 to lead–bismuth-cooled fast reactor,” Nuclear Technology and Radiation Protection, vol. 34, no. 2, pp. 122–128, 2019.
  • [13] A. B. Arslan, I. Yılmaz, G. Bakır and H. Yapıcı, “Transmutations of long-lived and medium-lived fission products extracted from CANDU and PWR spent fuels in an accelerator-driven system,” Science and Technology of Nuclear Installations, vol. 2019, 2019, Art. no. 4930274.
  • [14] D. B. Pelowitz, et al. MCNPXTM User's Manual, Version 2.7.0. Los Alamos National Laboratory Tech. Rep. LA-CP-11-00438. Los Alamos, NM, USA, 2011.
  • [15] W. B. Wilson, S. T. Cowell, T. R. England, A. C. Hayes and P. Moller, “A manual for CINDER'90 Version 07.4 codes and data,” Los Alamos National Laboratory report LA-UR-07-8412, Version 07.4.2, 2008.
There are 15 citations in total.

Details

Primary Language English
Subjects Energy, Nuclear Energy Systems, Renewable Energy Resources
Journal Section Research Article
Authors

Büşra Durmaz 0000-0001-6659-1067

Alper Buğra Arslan 0000-0001-9964-2342

Hüseyin Yapıcı 0000-0003-2994-7786

Submission Date March 21, 2025
Acceptance Date May 23, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Durmaz, B., Arslan, A. B., & Yapıcı, H. (2025). Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems. Duzce University Journal of Science and Technology, 13(3), 1289-1296. https://doi.org/10.29130/dubited.1662715
AMA Durmaz B, Arslan AB, Yapıcı H. Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems. DUBİTED. July 2025;13(3):1289-1296. doi:10.29130/dubited.1662715
Chicago Durmaz, Büşra, Alper Buğra Arslan, and Hüseyin Yapıcı. “Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems”. Duzce University Journal of Science and Technology 13, no. 3 (July 2025): 1289-96. https://doi.org/10.29130/dubited.1662715.
EndNote Durmaz B, Arslan AB, Yapıcı H (July 1, 2025) Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems. Duzce University Journal of Science and Technology 13 3 1289–1296.
IEEE B. Durmaz, A. B. Arslan, and H. Yapıcı, “Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems”, DUBİTED, vol. 13, no. 3, pp. 1289–1296, 2025, doi: 10.29130/dubited.1662715.
ISNAD Durmaz, Büşra et al. “Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems”. Duzce University Journal of Science and Technology 13/3 (July2025), 1289-1296. https://doi.org/10.29130/dubited.1662715.
JAMA Durmaz B, Arslan AB, Yapıcı H. Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems. DUBİTED. 2025;13:1289–1296.
MLA Durmaz, Büşra et al. “Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems”. Duzce University Journal of Science and Technology, vol. 13, no. 3, 2025, pp. 1289-96, doi:10.29130/dubited.1662715.
Vancouver Durmaz B, Arslan AB, Yapıcı H. Performance Analysis of MOX and Thorium Dioxide Fuels in Accelerator-Driven Systems. DUBİTED. 2025;13(3):1289-96.