Research Article
BibTex RIS Cite

Sustainable Dye-Sensitized Solar Cells Enhanced with CdS and Natural P. pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes

Year 2025, Volume: 13 Issue: 3, 1235 - 1249, 31.07.2025
https://doi.org/10.29130/dubited.1668896

Abstract

This study presents a novel and sustainable approach to dye-sensitized solar cell (DSSC) design by
integrating a natural dye extracted from Peltophorum pterocarpum with CdS co-sensitization and ZnO
nanorod-modified TiO₂ photoelectrodes. The fabricated DSSCs were enhanced through the integration
of ZnO nanorods on TiO₂ photoelectrodes and further modified with CdS co-sensitization to boost their
photovoltaic and photodetection capabilities. The devices were evaluated under a broad range of light
intensities (100 to 0.01 mW/cm²), revealing dual functionality: efficient photovoltaic operation under
standard illumination and superior sensitivity under ultra-low light. Under standard illumination, the
highest efficiency (8.15%) was achieved with N719 dye and ZnO/TiO₂ electrodes. However, the P.
pterocarpum-based cells also exhibited competitive performance, reaching 6.92% with CdS and ZnO
enhancement. Remarkably, under ultra-low light (0.01 mW/cm²), the natural dye-based DSSCs
demonstrated power conversion efficiencies exceeding 18%, rivaling commercial dye systems. These
results highlight the synergistic role of ZnO nanorods and CdS in enhancing charge transport and light
absorption, while also showcasing the viability of natural dyes for eco-friendly, low-cost optoelectronic
applications. This study is among the first to demonstrate the synergistic integration of P. pterocarpum
natural dye, CdS co-sensitization, and ZnO nanorods in DSSCs and in this research, sustainable natural
dye utilization with structural nanomaterial engineering is uniquely bridged to develop DSSCs capable
of dual functionality under both standard and ultra-low light conditions.

Ethical Statement

I declare that there is no conflict of interest regarding the publication of this article.

References

  • [1] H. Abdullah, N. H. Yunos, S. Mahalingam, M. Ahmad and B. Yuliarto, “Photovoltaic and EIS performance of SnO₂/SWCNTS based–sensitized solar cell,” Procedia Engineering, vol. 170, pp. 1–7, 2017.
  • [2] H. Hafez, M. Saif and M. S. A. Abdel-Mottaleb, “Down-converting lanthanide doped TiO₂ photoelectrodes for efficiency enhancement of dye-sensitized solar cells,” Journal of Power Sources, vol. 196, no. 13, pp. 5792–5796, 2011.
  • [3] M. I. Hoffert et al., “Energy implications of future stabilization of atmospheric CO₂ content,” Nature, vol. 395, no. 6705, pp. 881–884, 1998.
  • [4] J. Zhao, A. Wang and M. A. Green, “24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Progress in Photovoltaics: Research and Applications, vol. 7, no. 6, pp. 471–474, 1999.
  • [5] S. Mathew et al., “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nature chemistry, vol. 6, no. 3, pp. 242–247, 2014.
  • [6] M. A. M. Al-Alwani, N. A. Ludin, A. B. Mohamad, A. A. H. Kadhum and K. Sopian, “Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 179, pp. 23–31, 2017.
  • [7] B. E. Hardin, H. J. Snaith and M. D. McGehee, “The renaissance of dye-sensitized solar cells,” Nature Photonics, vol. 6, no. 3, pp. 162–169, 2012.
  • [8] T. M. El-Agez, A. A. El Tayyan, A. Al-Kahlout, S. A. Taya and M. S. Abdel-Latif, “Dye-sensitized solar cells based on ZnO films and natural dyes,” International Journal of Materials and Chemistry, vol. 2, no. 3, pp. 105–110, 2012.
  • [9] S. Shalini, R. Balasundaraprabhu, T. S. Kumar, K. Sivakumaran and M. D. Kannan, “Synergistic effect of sodium and yeast in improving the efficiency of DSSC sensitized with extract from petals of Kigelia africana,” Optical Materials, vol. 79, pp. 210–219, 2018.
  • [10] H. Chang and Y. J. Lo, “Pomegranate leaves and mulberry fruit as natural sensitizers for dyesensitized solar cells,” Solar Energy, vol. 84, no. 10, pp. 1833–1837, 2010.
  • [11] H. Chang, H. M. Wu, T. L. Chen, K. D. Huang, C. S. Jwo and Y. J. Lo, “Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea,” Journal of Alloys and Compounds, vol. 495, no. 2, pp. 606–610, 2010.
  • [12] Q. L. Ma, S. Ma and Y. M. Huang, “Enhanced photovoltaic performance of dye-sensitized solar cell with ZnO nanohoneycombs decorated TiO₂ photoanode,” Materials letters, vol. 218, pp. 237– 240, 2018.
  • [13] D. Sinha, D. De and A. Ayaz, “Performance and stability analysis of curcumin dye as a photosensitizer used in nanostructured ZnO based DSSC,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 193, pp. 467–474, 2018.
  • [14] S. Yadav and A. Tadinada, “Enhanced patient care through collaborative team play: An orthodontist and an OMF radiologist's collective perspective,” APOS Trends in Orthodontics, vol. 5, no. 3, pp. 94, 2015.
  • [15] S. Ren, L. Y. Chang, S. K. Lim, J. Zhao, M. Smith, N. Zhao and S. Gradečak, “Inorganic–organic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires,” Nano letters, vol. 11, no. 9, pp. 3998–4002, 2011.
  • [16] H. O. Shoyiga, S. O. Akpasi, J. Akpan, U. O. Amune and S. L. Kiambi, “Novel photoactive material and fabrication techniques for solar cells application: Nanocellulose-based graphene oxide CdS composite,” Clean Energy, vol. 8, no. 2, pp. 189–216, 2024.
  • [17] H. C. Liao, S. Y. Chen and D. M. Liu, “In-situ growing CdS single-crystal nanorods via P3HT polymer as a soft template for enhancing photovoltaic performance,” Macromolecules, vol. 42, no. 17, pp. 6558–6563, 2009.
  • [18] S. Sagadevan and K. Pandurangan, “Synthesis, structural, optical and electrical properties of cadmium sulphide thin films by chemical bath deposition method,” International Journal of ChemTech Research, vol. 6, pp. 3748–3752, 2014.
  • [19] A. Triyanto, N. Ali and H. Salleh, “Development of natural dye photosensitizers for dye-sensitized solar cells: A review,” Environmental Science and Pollution Research, vol. 31, pp. 31679–31690, 2024.
  • [20] V. Cauda et al., “Multi-functional energy conversion and storage electrodes using flower-like zinc oxide nanostructures,” Energy, vol. 65, pp. 639–646, 2014.
  • [21] N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero and G. Sberveglieri, “Hierarchically assembled ZnO nanocrystallites for high‐efficiency dye‐sensitized solar cells,” Angewandte Chemie-International Edition, vol. 50, no. 51, p. 12321, 2011.
  • [22] P. Dhamodharan, C. Manoharan, S. Dhanapandian and P. Venkatachalam, “Dye-sensitized solar cell using sprayed ZnO nanocrystalline thin films on ITO as photoanode,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 136, pp. 1671–1678, 2015.
  • [23] L. De Marco et al., “Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 168, pp. 227–233, 2017.
  • [24] D. Y. Son, K. H. Bae, H. S. Kim and N. G. Park, “Effects of seed layer on growth of ZnO nanorod and performance of perovskite solar cell,” The Journal of Physical Chemistry C, vol. 119, no. 19, pp. 10321–10328, 2015.
  • [25] J. A. Anta, E. Guillén and R. Tena-Zaera, “ZnO-based dye-sensitized solar cells,” The Journal of Physical Chemistry C, vol. 116, no. 21, pp. 11413–11425, 2012.
  • [26] L. Nasi et al., “Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning,” Nanoscale, vol. 5, no. 3, pp. 1060–1066, 2013.
  • [27] M. Grätzel, “Photovoltaic performance and long-term stability of dye-sensitized mesoscopic solar cells,” Comptes Rendus Chimie, vol. 9, no. 5–6, pp. 578–583, 2006.
  • [28] R. Sasikumar, T. W. Chen, S. M. Chen, S. P. Rwei and S. K. Ramaraj, “Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO₂-doped graphene oxide hybrid nanocomposite as a photo-anode,” Optical Materials, vol. 79, pp. 345–352, 2018.
  • [29] P. Sanjay, K. Deepa, J. Madhavan and S. Senthil, “Optical, spectral and photovoltaic characterization of natural dyes extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea used as sensitizers for ZnO-based dye-sensitized solar cells,” Optical Materials, vol. 83, pp. 192–199, 2018.
  • [30] G. Bardizza, D. Pavanello, R. Galleano, T. Sample and H. Müllejans, “Calibration procedure for solar cells exhibiting slow response and application to a dye-sensitized photovoltaic device,” Solar Energy Materials and Solar Cells, vol. 160, pp. 418–424, 2017.
  • [31] A. M. El-Zohry and B. Zietz, “Electron dynamics in dye-sensitized solar cells influenced by dye– electrolyte complexation,” The Journal of Physical Chemistry C, vol. 124, no. 30, pp. 16300– 16307, 2020.
  • [32] M. Ö. Karakuş, M. E. Yakışıklıer, A. Delibaş, E. Ayyıldız and H. Çetin, “Anionic and cationic polymer-based quasi-solid-state dye-sensitized solar cell with poly(aniline) counter electrode,” Solar Energy, vol. 195, pp. 565–572, 2020.

CdS katkısıyla Desteklenmiş Doğal Peltophorum pterocarpum ile Sürdürülebilir Boya Duyarlı Güneş Hücreleri: ZnO Nanorodların ve Doğal Boyaların Enerji Üretimi ve Düşük Işık Algılamadaki Sinerjik Rolü

Year 2025, Volume: 13 Issue: 3, 1235 - 1249, 31.07.2025
https://doi.org/10.29130/dubited.1668896

Abstract

Bu çalışma, Peltophorum pterocarpum bitkisinden elde edilen doğal bir boyanın CdS eşduyarlılaştırması
ve ZnO nanorod ile modifiye edilmiş TiO₂ fotoelektrotlarla entegre edilmesiyle, boya duyarlı güneş hücresi (DSSC) tasarımına yenilikçi ve sürdürülebilir bir yaklaşım sunmaktadır. Üretilen
DSSC'ler, TiO₂ fotoelektrotlara entegre edilen ZnO nanorodlar ve CdS eş-duyarlılaştırması sayesinde
hem fotovoltaik hem de fotodetektör performansları açısından geliştirilmiştir. Cihazlar, 100 ila 0.01
mW/cm² arasında geniş bir ışık yoğunluğu aralığında değerlendirilmiş ve bu sayede hem standart
aydınlatma koşullarında verimli enerji üretimi hem de ultra düşük ışık seviyelerinde üstün algılama
hassasiyeti olmak üzere çift işlevlilik ortaya konmuştur.
Standart aydınlatma koşullarında en yüksek verim (%8.15), N719 boyası ve ZnO/TiO₂ elektrotlar ile
elde edilmiştir. Ancak P. pterocarpum bazlı hücreler de CdS ve ZnO katkısı ile %6,92’ye ulaşarak
rekabetçi bir performans sergilemiştir. Dikkat çekici şekilde, ultra düşük ışık koşullarında (0.01
mW/cm²) doğal boya bazlı DSSC’ler %18’in üzerinde güç dönüşüm verimliliği sağlayarak ticari
boyalara rakip olmuştur. Bu sonuçlar, ZnO nanorodlar ve CdS'nin yük taşıma ve ışık soğurma süreçlerini
artırmadaki sinerjik rolünü vurgularken, doğal boyaların çevre dostu ve düşük maliyetli optoelektronik
uygulamalardaki potansiyelini de gözler önüne sermektedir.
Bu çalışma, P. pterocarpum doğal boyasının, CdS eş-duyarlılaştırması ve ZnO nanorodlarla sinerjik
entegrasyonunu DSSC yapılarında ilk kez sistematik olarak ortaya koymakta ve sürdürülebilir doğal
boya kullanımı ile nanoyapısal mühendislik arasındaki köprüyü kurarak hem standart hem de ultra düşük
ışık koşullarında çift işlevli çalışabilen DSSC’lerin geliştirilmesine olanak tanımaktadır.

References

  • [1] H. Abdullah, N. H. Yunos, S. Mahalingam, M. Ahmad and B. Yuliarto, “Photovoltaic and EIS performance of SnO₂/SWCNTS based–sensitized solar cell,” Procedia Engineering, vol. 170, pp. 1–7, 2017.
  • [2] H. Hafez, M. Saif and M. S. A. Abdel-Mottaleb, “Down-converting lanthanide doped TiO₂ photoelectrodes for efficiency enhancement of dye-sensitized solar cells,” Journal of Power Sources, vol. 196, no. 13, pp. 5792–5796, 2011.
  • [3] M. I. Hoffert et al., “Energy implications of future stabilization of atmospheric CO₂ content,” Nature, vol. 395, no. 6705, pp. 881–884, 1998.
  • [4] J. Zhao, A. Wang and M. A. Green, “24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Progress in Photovoltaics: Research and Applications, vol. 7, no. 6, pp. 471–474, 1999.
  • [5] S. Mathew et al., “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nature chemistry, vol. 6, no. 3, pp. 242–247, 2014.
  • [6] M. A. M. Al-Alwani, N. A. Ludin, A. B. Mohamad, A. A. H. Kadhum and K. Sopian, “Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 179, pp. 23–31, 2017.
  • [7] B. E. Hardin, H. J. Snaith and M. D. McGehee, “The renaissance of dye-sensitized solar cells,” Nature Photonics, vol. 6, no. 3, pp. 162–169, 2012.
  • [8] T. M. El-Agez, A. A. El Tayyan, A. Al-Kahlout, S. A. Taya and M. S. Abdel-Latif, “Dye-sensitized solar cells based on ZnO films and natural dyes,” International Journal of Materials and Chemistry, vol. 2, no. 3, pp. 105–110, 2012.
  • [9] S. Shalini, R. Balasundaraprabhu, T. S. Kumar, K. Sivakumaran and M. D. Kannan, “Synergistic effect of sodium and yeast in improving the efficiency of DSSC sensitized with extract from petals of Kigelia africana,” Optical Materials, vol. 79, pp. 210–219, 2018.
  • [10] H. Chang and Y. J. Lo, “Pomegranate leaves and mulberry fruit as natural sensitizers for dyesensitized solar cells,” Solar Energy, vol. 84, no. 10, pp. 1833–1837, 2010.
  • [11] H. Chang, H. M. Wu, T. L. Chen, K. D. Huang, C. S. Jwo and Y. J. Lo, “Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea,” Journal of Alloys and Compounds, vol. 495, no. 2, pp. 606–610, 2010.
  • [12] Q. L. Ma, S. Ma and Y. M. Huang, “Enhanced photovoltaic performance of dye-sensitized solar cell with ZnO nanohoneycombs decorated TiO₂ photoanode,” Materials letters, vol. 218, pp. 237– 240, 2018.
  • [13] D. Sinha, D. De and A. Ayaz, “Performance and stability analysis of curcumin dye as a photosensitizer used in nanostructured ZnO based DSSC,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 193, pp. 467–474, 2018.
  • [14] S. Yadav and A. Tadinada, “Enhanced patient care through collaborative team play: An orthodontist and an OMF radiologist's collective perspective,” APOS Trends in Orthodontics, vol. 5, no. 3, pp. 94, 2015.
  • [15] S. Ren, L. Y. Chang, S. K. Lim, J. Zhao, M. Smith, N. Zhao and S. Gradečak, “Inorganic–organic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires,” Nano letters, vol. 11, no. 9, pp. 3998–4002, 2011.
  • [16] H. O. Shoyiga, S. O. Akpasi, J. Akpan, U. O. Amune and S. L. Kiambi, “Novel photoactive material and fabrication techniques for solar cells application: Nanocellulose-based graphene oxide CdS composite,” Clean Energy, vol. 8, no. 2, pp. 189–216, 2024.
  • [17] H. C. Liao, S. Y. Chen and D. M. Liu, “In-situ growing CdS single-crystal nanorods via P3HT polymer as a soft template for enhancing photovoltaic performance,” Macromolecules, vol. 42, no. 17, pp. 6558–6563, 2009.
  • [18] S. Sagadevan and K. Pandurangan, “Synthesis, structural, optical and electrical properties of cadmium sulphide thin films by chemical bath deposition method,” International Journal of ChemTech Research, vol. 6, pp. 3748–3752, 2014.
  • [19] A. Triyanto, N. Ali and H. Salleh, “Development of natural dye photosensitizers for dye-sensitized solar cells: A review,” Environmental Science and Pollution Research, vol. 31, pp. 31679–31690, 2024.
  • [20] V. Cauda et al., “Multi-functional energy conversion and storage electrodes using flower-like zinc oxide nanostructures,” Energy, vol. 65, pp. 639–646, 2014.
  • [21] N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero and G. Sberveglieri, “Hierarchically assembled ZnO nanocrystallites for high‐efficiency dye‐sensitized solar cells,” Angewandte Chemie-International Edition, vol. 50, no. 51, p. 12321, 2011.
  • [22] P. Dhamodharan, C. Manoharan, S. Dhanapandian and P. Venkatachalam, “Dye-sensitized solar cell using sprayed ZnO nanocrystalline thin films on ITO as photoanode,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 136, pp. 1671–1678, 2015.
  • [23] L. De Marco et al., “Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 168, pp. 227–233, 2017.
  • [24] D. Y. Son, K. H. Bae, H. S. Kim and N. G. Park, “Effects of seed layer on growth of ZnO nanorod and performance of perovskite solar cell,” The Journal of Physical Chemistry C, vol. 119, no. 19, pp. 10321–10328, 2015.
  • [25] J. A. Anta, E. Guillén and R. Tena-Zaera, “ZnO-based dye-sensitized solar cells,” The Journal of Physical Chemistry C, vol. 116, no. 21, pp. 11413–11425, 2012.
  • [26] L. Nasi et al., “Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning,” Nanoscale, vol. 5, no. 3, pp. 1060–1066, 2013.
  • [27] M. Grätzel, “Photovoltaic performance and long-term stability of dye-sensitized mesoscopic solar cells,” Comptes Rendus Chimie, vol. 9, no. 5–6, pp. 578–583, 2006.
  • [28] R. Sasikumar, T. W. Chen, S. M. Chen, S. P. Rwei and S. K. Ramaraj, “Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO₂-doped graphene oxide hybrid nanocomposite as a photo-anode,” Optical Materials, vol. 79, pp. 345–352, 2018.
  • [29] P. Sanjay, K. Deepa, J. Madhavan and S. Senthil, “Optical, spectral and photovoltaic characterization of natural dyes extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea used as sensitizers for ZnO-based dye-sensitized solar cells,” Optical Materials, vol. 83, pp. 192–199, 2018.
  • [30] G. Bardizza, D. Pavanello, R. Galleano, T. Sample and H. Müllejans, “Calibration procedure for solar cells exhibiting slow response and application to a dye-sensitized photovoltaic device,” Solar Energy Materials and Solar Cells, vol. 160, pp. 418–424, 2017.
  • [31] A. M. El-Zohry and B. Zietz, “Electron dynamics in dye-sensitized solar cells influenced by dye– electrolyte complexation,” The Journal of Physical Chemistry C, vol. 124, no. 30, pp. 16300– 16307, 2020.
  • [32] M. Ö. Karakuş, M. E. Yakışıklıer, A. Delibaş, E. Ayyıldız and H. Çetin, “Anionic and cationic polymer-based quasi-solid-state dye-sensitized solar cell with poly(aniline) counter electrode,” Solar Energy, vol. 195, pp. 565–572, 2020.
There are 32 citations in total.

Details

Primary Language English
Subjects Photovoltaic Power Systems, Renewable Energy Resources
Journal Section Research Article
Authors

Mücella Özbay Karakuş 0000-0003-0599-8802

Submission Date April 1, 2025
Acceptance Date May 17, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Özbay Karakuş, M. (2025). Sustainable Dye-Sensitized Solar Cells Enhanced with CdS and Natural P. pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes. Duzce University Journal of Science and Technology, 13(3), 1235-1249. https://doi.org/10.29130/dubited.1668896
AMA Özbay Karakuş M. Sustainable Dye-Sensitized Solar Cells Enhanced with CdS and Natural P. pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes. DUBİTED. July 2025;13(3):1235-1249. doi:10.29130/dubited.1668896
Chicago Özbay Karakuş, Mücella. “Sustainable Dye-Sensitized Solar Cells Enhanced With CdS and Natural P. Pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes”. Duzce University Journal of Science and Technology 13, no. 3 (July 2025): 1235-49. https://doi.org/10.29130/dubited.1668896.
EndNote Özbay Karakuş M (July 1, 2025) Sustainable Dye-Sensitized Solar Cells Enhanced with CdS and Natural P. pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes. Duzce University Journal of Science and Technology 13 3 1235–1249.
IEEE M. Özbay Karakuş, “Sustainable Dye-Sensitized Solar Cells Enhanced with CdS and Natural P. pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes”, DUBİTED, vol. 13, no. 3, pp. 1235–1249, 2025, doi: 10.29130/dubited.1668896.
ISNAD Özbay Karakuş, Mücella. “Sustainable Dye-Sensitized Solar Cells Enhanced With CdS and Natural P. Pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes”. Duzce University Journal of Science and Technology 13/3 (July2025), 1235-1249. https://doi.org/10.29130/dubited.1668896.
JAMA Özbay Karakuş M. Sustainable Dye-Sensitized Solar Cells Enhanced with CdS and Natural P. pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes. DUBİTED. 2025;13:1235–1249.
MLA Özbay Karakuş, Mücella. “Sustainable Dye-Sensitized Solar Cells Enhanced With CdS and Natural P. Pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes”. Duzce University Journal of Science and Technology, vol. 13, no. 3, 2025, pp. 1235-49, doi:10.29130/dubited.1668896.
Vancouver Özbay Karakuş M. Sustainable Dye-Sensitized Solar Cells Enhanced with CdS and Natural P. pterocarpum Dye for Dual Energy and Low-Light Sensing: The Synergistic Role of ZnO Nanorods and Natural Dyes. DUBİTED. 2025;13(3):1235-49.