Research Article
BibTex RIS Cite

3B Baskılı PLA+ Malzemesinin Sertlik ve Darbe Dayanımı Üzerine Dondurma Süresinin Etkisi

Year 2025, Volume: 13 Issue: 4, 1799 - 1811, 30.10.2025
https://doi.org/10.29130/dubited.1757310

Abstract

Bu ön çalışmada, FDM tekniği kullanılarak %50 ve %100 doluluk oranlarında ve bal peteği deseninde üretilen 3B baskılı PLA+ numunelerin dondurulma süresinin darbe dayanım performansı üzerindeki etkisi araştırılmıştır. Numuneler -80 °C'de farklı sürelerle (72 saate kadar) muhafaza edilmiş ve boyutsal değişimleri, sertlikleri ile darbe dayanımları incelenmiştir. Bulgular, düşük sıcaklıklara uzun süre maruz kalan numunelerde çapta hafif bir azalma olduğunu ve bunun malzeme büzülmesinden kaynaklandığını göstermektedir. Buna karşılık, sertlik değerleri dondurulma süresiyle birlikte artmış; en yüksek Shore D sertliği 85.78 ile tam dolu numunelerde elde edilmiştir. Darbe testleri, %100 doluluk oranına sahip numunelerin %50 doluluk oranlılara göre daha fazla enerji absorbe ettiğini ortaya koymuş; en yüksek darbe dayanımı (24.53 kJ/m²) 72 saat dondurulan numunelerde ölçülmüştür. Kırık yüzey incelemeleri, dondurma süresinin çatlak ilerleme deseninde anlamlı bir değişime neden olmadığını göstermiştir. Genel olarak, elde edilen sonuçlar PLA+ malzemesinin kriyojenik koşullarda mekanik dayanımını koruduğunu ve hatta artırabildiğini göstermekte olup, bu malzemeyi zorlu çevresel koşullarda kullanılabilecek işlevsel parçalar için uygun bir aday haline getirmektedir.

References

  • Ansari, A. A., & Kamil, M. (2022). Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture, 5(3), 369–383. https://doi.org/10.1016/j.ijlmm.2022.04.006
  • Azadi, M., Dadashi, A., Dezianian, S., Kianifar, M., Torkaman, S., & Chiyani, M. (2021a). High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces in Mechanics, 3, 1–11. https://doi.org/10.1016/j.finmec.2021.100016
  • Azadi, M., Dadashi, A., Dezianian, S., Kianifar, M., Torkaman, S., & Chiyani, M. (2021b). High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces in Mechanics, 3(April), Article 100016. https://doi.org/10.1016/j.finmec.2021.100016
  • Bartolomé, E., Bozzo, B., Sevilla, P., Martínez-Pasarell, O., Puig, T., & Granados, X. (2017). ABS 3D printed solutions for cryogenic applications. Cryogenics, 82, 30–37. https://doi.org/10.1016/j.cryogenics.2017.01.005
  • Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 180, 332–348. https://doi.org/10.1016/j.engstruct.2018.11.045
  • Bulanda, K., Oleksy, M., Oliwa, R., Budzik, G., Przeszłowski, Ł., Fal, J., & Jesionowski, T. (2021). Polymer composites based on polycarbonate (PC) applied to additive manufacturing using melted and extruded manufacturing (MEM) technology. Polymers, 13(15), Article 2455. https://doi.org/10.3390/POLYM13152455
  • Çevik, Ü., & Kam, M. (2020). A review study on mechanical properties of obtained products by FDM method and metal/polymer composite filament production. Journal of Nanomaterials, 2020(1), Article 6187149. https://doi.org/10.1155/2020/6187149
  • Chen, D., Li, J., Yuan, Y., Gao, C., Cui, Y., Li, S., Liu, X., Wang, H., Peng, C., & Wu, Z. (2021). A review of the polymer for cryogenic application: Methods, mechanisms and perspectives. Polymers, 13(3), 1–29. https://doi.org/10.3390/polym13030320
  • Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392. https://doi.org/10.1016/j.addr.2016.06.012
  • Gonabadi, H., Yadav, A., & Bull, S. J. (2020). The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. The International Journal of Advanced Manufacturing Technology, 111(3–4), 695–709. https://doi.org/10.1007/s00170-020-06138-4
  • Grémare, A., Guduric, V., Bareille, R., Heroguez, V., Latour, S., L’heureux, N., Fricain, J. C., Catros, S., & Le Nihouannen, D. (2018). Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 106(4), 887–894. https://doi.org/10.1002/jbm.a.36289
  • Gupta, A., Kumar, N., Sachdeva, A., Sharma, G. K., Kumar, M., & Verma, R. (2025). Effect of cryogenic treatment on the mechanical properties of 3D-printed polylactic acid part. Cryogenics, 145, Article 104000. https://doi.org/10.1016/j.cryogenics.2024.104000
  • Huang, B., Aslan, E., Jiang, Z., Daskalakis, E., Jiao, M., Aldalbahi, A., Vyas, C., & Bártolo, P. (2020). Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Additive Manufacturing, 36, Article 101452. https://doi.org/10.1016/j.addma.2020.101452
  • ISO/ASTM. (2021). Additive manufacturing: General principles — Fundamentals and vocabulary (ISO/ASTM 52900:2021). https://www.iso.org/standard/74514.html
  • ISO. (2023). Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test (ISO 179-1:2023). https://www.iso.org/standard/84393.html
  • Jayswal, A., & Adanur, S. (2023). Characterization of polylactic acid/thermoplastic polyurethane composite filaments manufactured for additive manufacturing with fused deposition modeling. Journal of Thermoplastic Composite Materials, 36(4), 1450–1471. https://doi.org/10.1177/08927057211062561
  • Jia, S., Zhao, L., Wang, X., Chen, Y., Pan, H., Han, L., Zhang, H., Dong, L., & Zhang, H. (2022). Poly (lactic acid) blends with excellent low temperature toughness: A comparative study on poly (lactic acid) blends with different toughening agents. International Journal of Biological Macromolecules, 201, 662–675. https://doi.org/10.1016/j.ijbiomac.2022.01.126
  • Ma, Q., Rejab, M. R. M., Song, Y., Zhang, X., Hanon, M. M., Abdullah, M. H., & Kumar, A. P. (2024). Effect of infill pattern of polylactide acid (PLA) 3D-printed integral sandwich panels under ballistic impact loading. Materials Today Communications, 38, Article 107626. https://doi.org/10.1016/j.mtcomm.2023.107626
  • Mysiukiewicz, O., Barczewski, M., & Kloziński, A. (2020). The influence of sub-zero conditions on the mechanical properties of polylactide-based composites. Materials, 13(24), 1–12. https://doi.org/10.3390/ma13245789
  • Nikonovich, M., Costa, J. F. S., Fonseca, A. C., Ramalho, A., & Emami, N. (2023). Structural, thermal, and mechanical characterisation of PEEK-based composites in cryogenic temperature. Polymer Testing, 125, Article 108139. https://doi.org/10.1016/j.polymertesting.2023.108139
  • Osman Er, A., & Osman, M. A. (2024). Ergiyik filament ile imalat yönteminde kullanılan PLA ve çelik katkılı PLA filament malzemelerin mekanik ve fiziksel özelliklerinin incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2), 1285–1301. https://doi.org/10.17341/gazimmfd.1276420
  • Pérez, M., Carou, D., Rubio, E. M., & Teti, R. (2020). Current advances in additive manufacturing. Procedia CIRP, 88, 439–444. https://doi.org/10.1016/j.procir.2020.05.076
  • Raghunath, K. R., & Prashanth, N. (2020). Influence of material density & model orientation on the mechanical strength & surface morphology of FDM based 3D printed specimens. AIP Conference Proceedings, India, 2283(1), Article 020090. https://doi.org/10.1063/5.0026999
  • Raichur, S., Ravishankar, R., & Kumar, R. R. (2024). Tribological studies of nanoclay-reinforced PLA composites developed by 3D printing technology. Journal of The Institution of Engineers (India): Series D, 105(1), 517–525. https://doi.org/10.1007/s40033-023-00500-y
  • Santo, J., Pradhik, V., Kalakoti, S., Saravanan, P., & Penumakala, P. K. (2024). Effect of composite processing technique on tribological properties of 3D printed PLA-graphene composites. Tribology International, 198, Article 109895. https://doi.org/10.1016/j.triboint.2024.109895
  • Teymoorzadeh, H., & Rodrigue, D. (2015). Biocomposites of wood flour and polylactic acid: Processing and properties. Journal of Biobased Materials and Bioenergy, 9(2), 252–257. https://doi.org/10.1166/jbmb.2015.1510
  • Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22–37. https://doi.org/10.1016/j.mattod.2017.07.001
  • Vaught, L., Gonzalez, E., Meyer, J. L., & Polycarpou, A. A. (2023). Rapid qualification of fused filament fabrication thermoplastics for cryogenic applications. Polymer Testing, 129, Article 108288. https://doi.org/10.1016/j.polymertesting.2023.108288
  • Vishal, K., Rajkumar, K., Sabarinathan, P., & Dhinakaran, V. (2022). Mechanical and wear characteristics investigation on 3D printed silicon filled poly (Lactic Acid) biopolymer composite fabricated by fused deposition modeling. Silicon, 14(15), 9379–9391. https://doi.org/10.1007/s12633-022-01712-9
  • Zhang, P., Hu, Z., Xie, H., Lee, G.-H., & Lee, C.-H. (2019). Friction and wear characteristics of polylactic acid (PLA) for 3D printing under reciprocating sliding condition. Industrial Lubrication and Tribology, 72(4): 533-539. https://doi.org/10.1108/ILT-11-2016-0280

Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+

Year 2025, Volume: 13 Issue: 4, 1799 - 1811, 30.10.2025
https://doi.org/10.29130/dubited.1757310

Abstract

This preliminary study investigates the effect of freezing duration on the impact and strength performance of 3D-printed PLA+ specimens produced with 50% and 100% infill densities in a honeycomb pattern using the FDM technique. Samples were stored at -80 °C for varying time intervals (up to 72 hours), and their dimensional changes, hardness, and impact resistance were evaluated. Results indicate that prolonged exposure to sub-zero temperatures caused a slight reduction in specimen diameter, likely due to material shrinkage. Conversely, hardness values increased with freezing time, reaching a maximum Shore D value of 85.78 for fully solid samples. Impact testing revealed that 100% infill density specimens absorbed more energy than 50% counterparts, with the highest impact strength (24.53 kJ/m²) observed after 72 hours of freezing. Visual analysis showed no significant variation in crack trajectory with freezing duration. Overall, the findings suggest that PLA+ retains and even improves its mechanical robustness under cryogenic conditions, making it a promising candidate for applications requiring durability in extreme environments.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

References

  • Ansari, A. A., & Kamil, M. (2022). Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture, 5(3), 369–383. https://doi.org/10.1016/j.ijlmm.2022.04.006
  • Azadi, M., Dadashi, A., Dezianian, S., Kianifar, M., Torkaman, S., & Chiyani, M. (2021a). High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces in Mechanics, 3, 1–11. https://doi.org/10.1016/j.finmec.2021.100016
  • Azadi, M., Dadashi, A., Dezianian, S., Kianifar, M., Torkaman, S., & Chiyani, M. (2021b). High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces in Mechanics, 3(April), Article 100016. https://doi.org/10.1016/j.finmec.2021.100016
  • Bartolomé, E., Bozzo, B., Sevilla, P., Martínez-Pasarell, O., Puig, T., & Granados, X. (2017). ABS 3D printed solutions for cryogenic applications. Cryogenics, 82, 30–37. https://doi.org/10.1016/j.cryogenics.2017.01.005
  • Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 180, 332–348. https://doi.org/10.1016/j.engstruct.2018.11.045
  • Bulanda, K., Oleksy, M., Oliwa, R., Budzik, G., Przeszłowski, Ł., Fal, J., & Jesionowski, T. (2021). Polymer composites based on polycarbonate (PC) applied to additive manufacturing using melted and extruded manufacturing (MEM) technology. Polymers, 13(15), Article 2455. https://doi.org/10.3390/POLYM13152455
  • Çevik, Ü., & Kam, M. (2020). A review study on mechanical properties of obtained products by FDM method and metal/polymer composite filament production. Journal of Nanomaterials, 2020(1), Article 6187149. https://doi.org/10.1155/2020/6187149
  • Chen, D., Li, J., Yuan, Y., Gao, C., Cui, Y., Li, S., Liu, X., Wang, H., Peng, C., & Wu, Z. (2021). A review of the polymer for cryogenic application: Methods, mechanisms and perspectives. Polymers, 13(3), 1–29. https://doi.org/10.3390/polym13030320
  • Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392. https://doi.org/10.1016/j.addr.2016.06.012
  • Gonabadi, H., Yadav, A., & Bull, S. J. (2020). The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. The International Journal of Advanced Manufacturing Technology, 111(3–4), 695–709. https://doi.org/10.1007/s00170-020-06138-4
  • Grémare, A., Guduric, V., Bareille, R., Heroguez, V., Latour, S., L’heureux, N., Fricain, J. C., Catros, S., & Le Nihouannen, D. (2018). Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 106(4), 887–894. https://doi.org/10.1002/jbm.a.36289
  • Gupta, A., Kumar, N., Sachdeva, A., Sharma, G. K., Kumar, M., & Verma, R. (2025). Effect of cryogenic treatment on the mechanical properties of 3D-printed polylactic acid part. Cryogenics, 145, Article 104000. https://doi.org/10.1016/j.cryogenics.2024.104000
  • Huang, B., Aslan, E., Jiang, Z., Daskalakis, E., Jiao, M., Aldalbahi, A., Vyas, C., & Bártolo, P. (2020). Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Additive Manufacturing, 36, Article 101452. https://doi.org/10.1016/j.addma.2020.101452
  • ISO/ASTM. (2021). Additive manufacturing: General principles — Fundamentals and vocabulary (ISO/ASTM 52900:2021). https://www.iso.org/standard/74514.html
  • ISO. (2023). Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test (ISO 179-1:2023). https://www.iso.org/standard/84393.html
  • Jayswal, A., & Adanur, S. (2023). Characterization of polylactic acid/thermoplastic polyurethane composite filaments manufactured for additive manufacturing with fused deposition modeling. Journal of Thermoplastic Composite Materials, 36(4), 1450–1471. https://doi.org/10.1177/08927057211062561
  • Jia, S., Zhao, L., Wang, X., Chen, Y., Pan, H., Han, L., Zhang, H., Dong, L., & Zhang, H. (2022). Poly (lactic acid) blends with excellent low temperature toughness: A comparative study on poly (lactic acid) blends with different toughening agents. International Journal of Biological Macromolecules, 201, 662–675. https://doi.org/10.1016/j.ijbiomac.2022.01.126
  • Ma, Q., Rejab, M. R. M., Song, Y., Zhang, X., Hanon, M. M., Abdullah, M. H., & Kumar, A. P. (2024). Effect of infill pattern of polylactide acid (PLA) 3D-printed integral sandwich panels under ballistic impact loading. Materials Today Communications, 38, Article 107626. https://doi.org/10.1016/j.mtcomm.2023.107626
  • Mysiukiewicz, O., Barczewski, M., & Kloziński, A. (2020). The influence of sub-zero conditions on the mechanical properties of polylactide-based composites. Materials, 13(24), 1–12. https://doi.org/10.3390/ma13245789
  • Nikonovich, M., Costa, J. F. S., Fonseca, A. C., Ramalho, A., & Emami, N. (2023). Structural, thermal, and mechanical characterisation of PEEK-based composites in cryogenic temperature. Polymer Testing, 125, Article 108139. https://doi.org/10.1016/j.polymertesting.2023.108139
  • Osman Er, A., & Osman, M. A. (2024). Ergiyik filament ile imalat yönteminde kullanılan PLA ve çelik katkılı PLA filament malzemelerin mekanik ve fiziksel özelliklerinin incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2), 1285–1301. https://doi.org/10.17341/gazimmfd.1276420
  • Pérez, M., Carou, D., Rubio, E. M., & Teti, R. (2020). Current advances in additive manufacturing. Procedia CIRP, 88, 439–444. https://doi.org/10.1016/j.procir.2020.05.076
  • Raghunath, K. R., & Prashanth, N. (2020). Influence of material density & model orientation on the mechanical strength & surface morphology of FDM based 3D printed specimens. AIP Conference Proceedings, India, 2283(1), Article 020090. https://doi.org/10.1063/5.0026999
  • Raichur, S., Ravishankar, R., & Kumar, R. R. (2024). Tribological studies of nanoclay-reinforced PLA composites developed by 3D printing technology. Journal of The Institution of Engineers (India): Series D, 105(1), 517–525. https://doi.org/10.1007/s40033-023-00500-y
  • Santo, J., Pradhik, V., Kalakoti, S., Saravanan, P., & Penumakala, P. K. (2024). Effect of composite processing technique on tribological properties of 3D printed PLA-graphene composites. Tribology International, 198, Article 109895. https://doi.org/10.1016/j.triboint.2024.109895
  • Teymoorzadeh, H., & Rodrigue, D. (2015). Biocomposites of wood flour and polylactic acid: Processing and properties. Journal of Biobased Materials and Bioenergy, 9(2), 252–257. https://doi.org/10.1166/jbmb.2015.1510
  • Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22–37. https://doi.org/10.1016/j.mattod.2017.07.001
  • Vaught, L., Gonzalez, E., Meyer, J. L., & Polycarpou, A. A. (2023). Rapid qualification of fused filament fabrication thermoplastics for cryogenic applications. Polymer Testing, 129, Article 108288. https://doi.org/10.1016/j.polymertesting.2023.108288
  • Vishal, K., Rajkumar, K., Sabarinathan, P., & Dhinakaran, V. (2022). Mechanical and wear characteristics investigation on 3D printed silicon filled poly (Lactic Acid) biopolymer composite fabricated by fused deposition modeling. Silicon, 14(15), 9379–9391. https://doi.org/10.1007/s12633-022-01712-9
  • Zhang, P., Hu, Z., Xie, H., Lee, G.-H., & Lee, C.-H. (2019). Friction and wear characteristics of polylactic acid (PLA) for 3D printing under reciprocating sliding condition. Industrial Lubrication and Tribology, 72(4): 533-539. https://doi.org/10.1108/ILT-11-2016-0280
There are 30 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Enes Aslan 0000-0002-1849-2715

Submission Date August 3, 2025
Acceptance Date September 30, 2025
Publication Date October 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Aslan, E. (2025). Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+. Duzce University Journal of Science and Technology, 13(4), 1799-1811. https://doi.org/10.29130/dubited.1757310
AMA Aslan E. Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+. DUBİTED. October 2025;13(4):1799-1811. doi:10.29130/dubited.1757310
Chicago Aslan, Enes. “Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1799-1811. https://doi.org/10.29130/dubited.1757310.
EndNote Aslan E (October 1, 2025) Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+. Duzce University Journal of Science and Technology 13 4 1799–1811.
IEEE E. Aslan, “Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+”, DUBİTED, vol. 13, no. 4, pp. 1799–1811, 2025, doi: 10.29130/dubited.1757310.
ISNAD Aslan, Enes. “Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+”. Duzce University Journal of Science and Technology 13/4 (October2025), 1799-1811. https://doi.org/10.29130/dubited.1757310.
JAMA Aslan E. Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+. DUBİTED. 2025;13:1799–1811.
MLA Aslan, Enes. “Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1799-11, doi:10.29130/dubited.1757310.
Vancouver Aslan E. Influence of Freezing Time on Hardness and Impact Resistance of 3D-Printed PLA+. DUBİTED. 2025;13(4):1799-811.