Research Article
BibTex RIS Cite

R404A ve R410A Alternatif Olarak Yeni Nesil Soğutucu Akışkanlar Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji, Ekserji Ve Çevresel Performans Analizi

Year 2026, Volume: 14 Issue: 1, 163 - 176, 21.01.2026

Abstract

Bu çalışma, buhar sıkıştırmalı soğutma sistemlerinde yüksek küresel ısınma potansiyeline (GWP) sahip R404A ve R410A soğutucu akışkanlarına alternatif düşük-GWP soğutucu akışkanların enerji, ekserji ve çevresel performansının teorik olarak incelenmesidir. R404A için alternatif olarak R454C, R452A ve R449A incelenirken, R410A için alternatif olarak R454B, R452B ve R463A analiz edilmiştir. Analizler, 40 °C sabit kondenser sıcaklığı ve −25 °C ile +5 °C arasında evaporatör sıcaklıklarında gerçekleştirilmiştir. Enerji performansı; akışkan debisi, soğutma kapasitesi, kompresör gücü, performans katsayısı (COP) ile değerlendirilmiştir. Ekserji analizi kapsamında toplam ekserji yıkımı ve ekserji verimi hesaplanmış, çevresel etki ise Yaşam Döngüsü İklim Performansı (LCCP) yöntemiyle belirlenmiştir. Sonuçlar, R449A ve R454C’nin R404A’ya kıyasla daha yüksek COP (maksimum %6,87 artış) ve daha iyi ekserji verimi sunduğunu, ancak daha yüksek deşarj sıcaklıklarına sahip olduğunu göstermiştir. Benzer şekilde, R454B ve R452B, R410A’ya kıyasla biraz COP artışı ve daha düşük LCCP değerleri sağlıyorken, R463A ise düşük enerji/ekserji performansı ve yüksek emisyonlarıyla olumsuz sonuçlar vermiştir. Çevresel analiz, R449A ve R454B’nin sera gazı emisyonlarını önemli ölçüde azalttığını doğrulamaktadır. Genel olarak, termodinamik verimlilik ve çevresel etki göz önüne alındığında, R449A'nın R404A’ya, R454B’nin ise R410A'ya uygun bir çevre dostu alternatif olarak önerilmektedir.

References

  • Akbulut, U., & Kıncay, O. (2006). Buhar sıkıştırmalı soğutma çevrimlerinde enerji ve ekserji analizi. Tesisat Mühendisliği Dergisi, 94, 24–32.
  • Akyüz, A., Yıldırım, R., Gungor, A., & Tuncer, A. D. (2023). Experimental investigation of a solar-assisted air conditioning system: Energy and life cycle climate performance analysis. Thermal Science and Engineering Progress, 43, Article 101960. https://doi.org/10.1016/j.tsep.2023.101960
  • Aprea, C., Greco, A., & Maiorino, A. (2018). HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment. Applied Thermal Engineering, 141, 226–233. https://doi.org/10.1016/j.applthermaleng.2018.02.072
  • Belman-Flores, J. M., Román-Aguilar, R., Valle-Hernández, J., & Serrano-Arellano, J. (2024). Theoretical investigation of low global warming potential blends replacing R404A: The simple refrigeration cycle and its modifications. Journal of Thermal Science and Engineering Applications, 16(4), Article 041002. https://doi.org/10.1115/1.4064425
  • Cengel, Y. A., Boles, M. A., & Kanoğlu, M. (2019). Thermodynamics: An engineering approach (9th ed.). McGraw-Hill Education.
  • Chiasson, A. D. (2016). Geothermal heat pump and heat engine systems: Theory and practice. Wiley-ASME Press.
  • Choi, S., Oh, J., Hwang, Y., & Lee, H. (2017). Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea. Applied Thermal Engineering, 120, 88–98. https://doi.org/10.1016/j.applthermaleng.2017.03.105
  • Devecioğlu, A. G., & Oruç, V. (2023). Soğutma sistemlerinde R454C kullanılmasının deneysel incelenmesi. Politeknik Dergisi, 26(1), 153–160. https://doi.org/10.2339/politeknik.898828
  • Dinçer, İ., & Kanoğlu, M. (2010). Refrigeration systems and applications (2nd ed.). Wiley. https://doi.org/10.1002/9780470661093
  • Mota-Babiloni, A., Haro-Ortuño, J., Navarro-Esbrí, J., & Barragán-Cervera, Á. (2018). Experimental drop-in replacement of R404A for warm countries using the low GWP mixtures R454C and R455A. International Journal of Refrigeration, 91, 136–145. https://doi.org/10.1016/j.ijrefrig.2018.05.018
  • Oruç, V., Devecioğlu, A. G., & İlhan, D. B. (2024). Retrofit of an internal heat exchanger in a R404A refrigeration system using R452A: Experimental assessment on the energy efficiency and CO2 emissions. Next Energy, 3, Article 100107. https://doi.org/10.1016/j.nxener.2024.100107
  • Özer Şimşek, M., Karaağaç, M. O., Ergün, A., & Aktaş, M. (2023). The analysis of next-generation refrigerants in terms of energy, exergy, and LCCP perspective. Duzce University Journal of Science and Technology, 11(5), 2293–2308. https://doi.org/10.29130/dubited.1388565
  • The Chemours Company. (2024). Chemours Refrigerant Expert (CRE) (Version 2.0). https://www.opteon.com/en/support/product-tools/refrigerant-expert-tool
  • Yıldırım, R., Gungor, A., Akyüz, A., & Tuncer, A. D. (2023). A new approach for environmental analysis of vapor compression refrigeration systems: Environmental impact index. Thermal Science and Engineering Progress, 42, Article 101871. https://doi.org/10.1016/j.tsep.2023.101871
  • Yıldırım, R., Güngör, A., Kumaş, K., & Akyüz, A. (2021). Evaluation of low GWP refrigerants R452B and R454B as alternative to R410a in the heat hump systems. Journal of International Environmental Application and Science, 16(2), 47–52.
  • Yıldırım, R., Kumaş, K., Akyüz, A., & Tuncer, A. D. (2025). Evaluation of the performance of using R410A and R463A in a vapor compression refrigeration system: Energetic-exergetic analysis and environmental impact index (EII) assessment. Heat Transfer Research, 56(3), 1–13. https://doi.org/10.1615/HeatTransRes.2024054447
  • Yıldız, A., & Yıldırım, R. (2021). Investigation of using R134a, R1234yf and R513A as refrigerant in a heat pump. International Journal of Environmental Science and Technology, 18(5), 1201–1210. https://doi.org/10.1007/s13762-020-02857-z
  • Zhang, M., & Muehlbauer, J. (2012). Life cycle climate performance model for residential heat pump systems. In Proceedings of the International Refrigeration and Air Conditioning Conference (Paper 1311). http://docs.lib.purdue.edu/iracc/1311

Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants as Alternatives to R404A and R410A

Year 2026, Volume: 14 Issue: 1, 163 - 176, 21.01.2026

Abstract

This study comprehensively analyses the energy, exergy, and environmental performance of alternative low GWP refrigerants used to replace R404A and R410A refrigerants, with high global warming potential (GWP), in vapor compression cooling systems. The refrigerants R454C, R452A, and R449A were analyzed as alternatives for R404A, while R454B, R452B, and R463A were analyzed for R410A. The analyses were executed at a stable condenser temperature of 40 °C and evaporator at temperatures varying between -25 °C and +5 °C. Energy performance was evaluated by cooling capacity and coefficient of performance (COP), while exergy analysis covered total exergy destruction and exergy efficiency. The environmental impact was determined using the Life Cycle Climate Performance (LCCP) method. The results show that R449A and R454C offer higher COP (with a maximum increase 6.87%) and exergy efficiency compared to R404A, whereas R454B and R452B increase energy efficiency and provide lower LCCP values compared to R410A. In contrast, R463A exhibits low energy and exergy performance and high emission values. Environmental analyses confirm that R449A and R454B significantly reduce greenhouse gas emissions. These findings suggest that R449A is a suitable environmentally friendly alternative to R404A, and R454B is a suitable environmentally friendly alternative to R410A, considering both thermodynamic efficiency and environmental impact.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Supporting Institution

This research received no external funding.

Thanks

This study was produced from Barış Çelik's thesis titled ‘Energy, Exergy and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants as Alternatives to R404A and R410A’ under the supervision of Erkan Dikmen and Ragıp Yıldırım.

References

  • Akbulut, U., & Kıncay, O. (2006). Buhar sıkıştırmalı soğutma çevrimlerinde enerji ve ekserji analizi. Tesisat Mühendisliği Dergisi, 94, 24–32.
  • Akyüz, A., Yıldırım, R., Gungor, A., & Tuncer, A. D. (2023). Experimental investigation of a solar-assisted air conditioning system: Energy and life cycle climate performance analysis. Thermal Science and Engineering Progress, 43, Article 101960. https://doi.org/10.1016/j.tsep.2023.101960
  • Aprea, C., Greco, A., & Maiorino, A. (2018). HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment. Applied Thermal Engineering, 141, 226–233. https://doi.org/10.1016/j.applthermaleng.2018.02.072
  • Belman-Flores, J. M., Román-Aguilar, R., Valle-Hernández, J., & Serrano-Arellano, J. (2024). Theoretical investigation of low global warming potential blends replacing R404A: The simple refrigeration cycle and its modifications. Journal of Thermal Science and Engineering Applications, 16(4), Article 041002. https://doi.org/10.1115/1.4064425
  • Cengel, Y. A., Boles, M. A., & Kanoğlu, M. (2019). Thermodynamics: An engineering approach (9th ed.). McGraw-Hill Education.
  • Chiasson, A. D. (2016). Geothermal heat pump and heat engine systems: Theory and practice. Wiley-ASME Press.
  • Choi, S., Oh, J., Hwang, Y., & Lee, H. (2017). Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea. Applied Thermal Engineering, 120, 88–98. https://doi.org/10.1016/j.applthermaleng.2017.03.105
  • Devecioğlu, A. G., & Oruç, V. (2023). Soğutma sistemlerinde R454C kullanılmasının deneysel incelenmesi. Politeknik Dergisi, 26(1), 153–160. https://doi.org/10.2339/politeknik.898828
  • Dinçer, İ., & Kanoğlu, M. (2010). Refrigeration systems and applications (2nd ed.). Wiley. https://doi.org/10.1002/9780470661093
  • Mota-Babiloni, A., Haro-Ortuño, J., Navarro-Esbrí, J., & Barragán-Cervera, Á. (2018). Experimental drop-in replacement of R404A for warm countries using the low GWP mixtures R454C and R455A. International Journal of Refrigeration, 91, 136–145. https://doi.org/10.1016/j.ijrefrig.2018.05.018
  • Oruç, V., Devecioğlu, A. G., & İlhan, D. B. (2024). Retrofit of an internal heat exchanger in a R404A refrigeration system using R452A: Experimental assessment on the energy efficiency and CO2 emissions. Next Energy, 3, Article 100107. https://doi.org/10.1016/j.nxener.2024.100107
  • Özer Şimşek, M., Karaağaç, M. O., Ergün, A., & Aktaş, M. (2023). The analysis of next-generation refrigerants in terms of energy, exergy, and LCCP perspective. Duzce University Journal of Science and Technology, 11(5), 2293–2308. https://doi.org/10.29130/dubited.1388565
  • The Chemours Company. (2024). Chemours Refrigerant Expert (CRE) (Version 2.0). https://www.opteon.com/en/support/product-tools/refrigerant-expert-tool
  • Yıldırım, R., Gungor, A., Akyüz, A., & Tuncer, A. D. (2023). A new approach for environmental analysis of vapor compression refrigeration systems: Environmental impact index. Thermal Science and Engineering Progress, 42, Article 101871. https://doi.org/10.1016/j.tsep.2023.101871
  • Yıldırım, R., Güngör, A., Kumaş, K., & Akyüz, A. (2021). Evaluation of low GWP refrigerants R452B and R454B as alternative to R410a in the heat hump systems. Journal of International Environmental Application and Science, 16(2), 47–52.
  • Yıldırım, R., Kumaş, K., Akyüz, A., & Tuncer, A. D. (2025). Evaluation of the performance of using R410A and R463A in a vapor compression refrigeration system: Energetic-exergetic analysis and environmental impact index (EII) assessment. Heat Transfer Research, 56(3), 1–13. https://doi.org/10.1615/HeatTransRes.2024054447
  • Yıldız, A., & Yıldırım, R. (2021). Investigation of using R134a, R1234yf and R513A as refrigerant in a heat pump. International Journal of Environmental Science and Technology, 18(5), 1201–1210. https://doi.org/10.1007/s13762-020-02857-z
  • Zhang, M., & Muehlbauer, J. (2012). Life cycle climate performance model for residential heat pump systems. In Proceedings of the International Refrigeration and Air Conditioning Conference (Paper 1311). http://docs.lib.purdue.edu/iracc/1311
There are 18 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Erkan Dikmen 0000-0002-6804-8612

Ragıp Yıldırım 0000-0003-0902-3420

Bariş Çelik 0000-0001-5339-8495

Submission Date August 12, 2025
Acceptance Date December 9, 2025
Publication Date January 21, 2026
Published in Issue Year 2026 Volume: 14 Issue: 1

Cite

APA Dikmen, E., Yıldırım, R., & Çelik, B. (2026). Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants as Alternatives to R404A and R410A. Duzce University Journal of Science and Technology, 14(1), 163-176. https://doi.org/10.29130/dubited.1763252
AMA Dikmen E, Yıldırım R, Çelik B. Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants as Alternatives to R404A and R410A. DUBİTED. January 2026;14(1):163-176. doi:10.29130/dubited.1763252
Chicago Dikmen, Erkan, Ragıp Yıldırım, and Bariş Çelik. “Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants As Alternatives to R404A and R410A”. Duzce University Journal of Science and Technology 14, no. 1 (January 2026): 163-76. https://doi.org/10.29130/dubited.1763252.
EndNote Dikmen E, Yıldırım R, Çelik B (January 1, 2026) Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants as Alternatives to R404A and R410A. Duzce University Journal of Science and Technology 14 1 163–176.
IEEE E. Dikmen, R. Yıldırım, and B. Çelik, “Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants as Alternatives to R404A and R410A”, DUBİTED, vol. 14, no. 1, pp. 163–176, 2026, doi: 10.29130/dubited.1763252.
ISNAD Dikmen, Erkan et al. “Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants As Alternatives to R404A and R410A”. Duzce University Journal of Science and Technology 14/1 (January2026), 163-176. https://doi.org/10.29130/dubited.1763252.
JAMA Dikmen E, Yıldırım R, Çelik B. Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants as Alternatives to R404A and R410A. DUBİTED. 2026;14:163–176.
MLA Dikmen, Erkan et al. “Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants As Alternatives to R404A and R410A”. Duzce University Journal of Science and Technology, vol. 14, no. 1, 2026, pp. 163-76, doi:10.29130/dubited.1763252.
Vancouver Dikmen E, Yıldırım R, Çelik B. Energy, Exergy, and Environmental Performance Analysis of Vapor Compression Cooling Systems Using New Generation Refrigerants as Alternatives to R404A and R410A. DUBİTED. 2026;14(1):163-76.