Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimum Design Reinforced Concrete Cantilever Retaining Walls with Minimum Cost and Weight

Yıl 2018, , 1258 - 1268, 01.08.2018
https://doi.org/10.29130/dubited.435059

Öz

As in other reinforced concrete structures, the traditional design process of retaining walls is based on the trial and error method. Regulation criteria are tried to be provided in the traditional design, but no special effort can be made except engineering hunch for minimum weight or cost of the structure. In this study, the optimum design of a retaining wall was performed by jaya algorithm as single objective function for minimum weight or cost and as a multi-objective function taking both together. As a result of the optimum design, the wall dimensions and the reinforcement to be used in the critical sections can be determined in details. The study also examines the performance of the algorithm on this cited problem.

Kaynakça

  • [1] A. Saribas ve F. Erbatur, “Optimization and Sensitivity of Retaining Structures”, Journal of Geotechnical Engineering, c. 122, s.8, ss. 649-656, 1996.
  • [2] A. Kaveh ve A.F. Behnam, “Charged System Search Algorithm for the Optimum Cost Design of Reinforced Concrete Cantilever Retaining Walls”, Arabian Journal for Science and Engineering, c. 38, s. 3, ss. 563-570, 2013.
  • [3] B. Ceranic, C. Fryer ve R.W. Baines, “An Application of Simulated Annealing to the Optimum Design of Reinforced Concrete Retaining Structures”, Computers & Structures, c. 79, s. 17, ss. 1569-1581, 2001.
  • [4] V. Yepes, J. Alcala, C. Perea ve F. González-Vidosa, “A Parametric Study of Optimum Earth-Retaining Walls by Simulated Annealing”, Engineering Structures, c. 30, s. 3, ss. 821-830, 2008.
  • [5] G.L. Sivakumar Babu ve B.M. Basha, “Optimum Design of Cantilever Retaining Walls Using Target Reliability Approach”, International Journal of Geomechanics, c. 8, s. 4, ss. 240-252, 2008.
  • [6] V. Yepes, F. Gonzalez-Vidosa, J. Alcala ve P. Villalba, “CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy”, Journal of Computing in Civil Engineering, c. 26, s. 3, ss. 378-386, 2011.
  • [7] A. Akin, ve M.P. Saka, “Optimum Design of Concrete Cantilever Retaining Walls using Harmony Search Algorithm”. 9th International Congress on Advances in Civil Engineering, Trabzon, 2010.
  • [8] C.V. Camp ve A. Akin, “Design of Retaining Walls Using Big Bang–Big Crunch Optimization”, Journal of Structural Engineering, c. 138, s. 3, ss. 438-448, 2011.
  • [9] A.H. Kayhan ve A. Demir, “Betonarme Konsol Istinat Duvarlarının Parçacık Sürü Optimizasyonu ile Optimum Tasarımı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 22, s. 3, ss. 129-135, 2016.
  • [10] A.H. Gandomi, A.R. Kashani, D.A. Roke ve M. Mousavi, “Optimization of Retaining Wall Design using Recent Swarm Intelligence Techniques”, Engineering Structures, c. 103, ss. 72-84, 2015.
  • [11] M. Khajehzadeh, M.R. Taha, A. El-Shafie ve M. Eslami, “Modified Particle Swarm Optimization for Optimum Design of Spread Footing and Retaining Wall”, Journal of Zhejiang University-Science A, c. 12, s. 6, ss. 415-427, 2011.
  • [12] A. Kaveh, ve M. Khayatazad, “Optimal Design of Cantilever Retaining Walls using Ray Optimization Method”, Iranian Journal of Science and Technology Transactions of Civil Engineering, c. 38, s. C1+, ss. 261-274, 2014.
  • [13] I. Aydogdu, “Cost Optimization of Reinforced Concrete Cantilever Retaining Walls under Seismic Loading using a Biogeography-Based Optimization Algorithm with Levy Flights”, Engineering Optimization, c. 49, s. 3, ss. 381-400, 2017.
  • [14] M. Khajehzadeh, M.R. Taha ve M. Eslami, “A New Hybrid Firefly Algorithm for Foundation Optimization”, National Academy Science Letters, c. 36, s.3, ss. 279-288, 2013.
  • [15] R. Rao, “Jaya: a Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems”, International Journal of Industrial Engineering Computations, c. 7, s. 1, ss. 19-34, 2016.
  • [16] Building Code Requirements for Structural Concrete and Commentary, ACI Committee, ACI 318, 2014.

Betonarme Konsol İstinat Duvarlarının Minimum Maliyet ve Ağırlıkla Optimum Tasarımı

Yıl 2018, , 1258 - 1268, 01.08.2018
https://doi.org/10.29130/dubited.435059

Öz

Diğer betonarme yapılarda olduğu gibi
istinat duvarlarının da geleneksel tasarım süreci deneme yanılma yöntemini
temel almaktadır. Geleneksel tasarımda yönetmelik kriterleri sağlanmaya
çalışılmakta, ancak yapının minimum ağırlıkta ya da minimum maliyetle tasarımı
için mühendislik önsezisi dışında özel bir çaba gösterilememektedir. Bu çalışmada
bir istinat duvarının optimum tasarımı minimum ağırlık veya minimum maliyet
için tek amaç fonksiyonlu ve her ikisi birlikte dikkate alınarak çok amaç
fonksiyonu olarak Jaya algoritmasıyla gerçekleştirilmiştir. Optimum tasarım
sonucunda duvar boyutları ve kesitlerde kullanılacak asal donatılar detaylı
olarak belirlenebilmektedir. Çalışmada ayrıca aşağıya algoritmasının Bu problem
üzerindeki başarımı da incelenmiştir.

Kaynakça

  • [1] A. Saribas ve F. Erbatur, “Optimization and Sensitivity of Retaining Structures”, Journal of Geotechnical Engineering, c. 122, s.8, ss. 649-656, 1996.
  • [2] A. Kaveh ve A.F. Behnam, “Charged System Search Algorithm for the Optimum Cost Design of Reinforced Concrete Cantilever Retaining Walls”, Arabian Journal for Science and Engineering, c. 38, s. 3, ss. 563-570, 2013.
  • [3] B. Ceranic, C. Fryer ve R.W. Baines, “An Application of Simulated Annealing to the Optimum Design of Reinforced Concrete Retaining Structures”, Computers & Structures, c. 79, s. 17, ss. 1569-1581, 2001.
  • [4] V. Yepes, J. Alcala, C. Perea ve F. González-Vidosa, “A Parametric Study of Optimum Earth-Retaining Walls by Simulated Annealing”, Engineering Structures, c. 30, s. 3, ss. 821-830, 2008.
  • [5] G.L. Sivakumar Babu ve B.M. Basha, “Optimum Design of Cantilever Retaining Walls Using Target Reliability Approach”, International Journal of Geomechanics, c. 8, s. 4, ss. 240-252, 2008.
  • [6] V. Yepes, F. Gonzalez-Vidosa, J. Alcala ve P. Villalba, “CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy”, Journal of Computing in Civil Engineering, c. 26, s. 3, ss. 378-386, 2011.
  • [7] A. Akin, ve M.P. Saka, “Optimum Design of Concrete Cantilever Retaining Walls using Harmony Search Algorithm”. 9th International Congress on Advances in Civil Engineering, Trabzon, 2010.
  • [8] C.V. Camp ve A. Akin, “Design of Retaining Walls Using Big Bang–Big Crunch Optimization”, Journal of Structural Engineering, c. 138, s. 3, ss. 438-448, 2011.
  • [9] A.H. Kayhan ve A. Demir, “Betonarme Konsol Istinat Duvarlarının Parçacık Sürü Optimizasyonu ile Optimum Tasarımı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 22, s. 3, ss. 129-135, 2016.
  • [10] A.H. Gandomi, A.R. Kashani, D.A. Roke ve M. Mousavi, “Optimization of Retaining Wall Design using Recent Swarm Intelligence Techniques”, Engineering Structures, c. 103, ss. 72-84, 2015.
  • [11] M. Khajehzadeh, M.R. Taha, A. El-Shafie ve M. Eslami, “Modified Particle Swarm Optimization for Optimum Design of Spread Footing and Retaining Wall”, Journal of Zhejiang University-Science A, c. 12, s. 6, ss. 415-427, 2011.
  • [12] A. Kaveh, ve M. Khayatazad, “Optimal Design of Cantilever Retaining Walls using Ray Optimization Method”, Iranian Journal of Science and Technology Transactions of Civil Engineering, c. 38, s. C1+, ss. 261-274, 2014.
  • [13] I. Aydogdu, “Cost Optimization of Reinforced Concrete Cantilever Retaining Walls under Seismic Loading using a Biogeography-Based Optimization Algorithm with Levy Flights”, Engineering Optimization, c. 49, s. 3, ss. 381-400, 2017.
  • [14] M. Khajehzadeh, M.R. Taha ve M. Eslami, “A New Hybrid Firefly Algorithm for Foundation Optimization”, National Academy Science Letters, c. 36, s.3, ss. 279-288, 2013.
  • [15] R. Rao, “Jaya: a Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems”, International Journal of Industrial Engineering Computations, c. 7, s. 1, ss. 19-34, 2016.
  • [16] Building Code Requirements for Structural Concrete and Commentary, ACI Committee, ACI 318, 2014.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hasan Tahsin Öztürk 0000-0001-8479-9451

Yayımlanma Tarihi 1 Ağustos 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Öztürk, H. T. (2018). Betonarme Konsol İstinat Duvarlarının Minimum Maliyet ve Ağırlıkla Optimum Tasarımı. Duzce University Journal of Science and Technology, 6(4), 1258-1268. https://doi.org/10.29130/dubited.435059
AMA Öztürk HT. Betonarme Konsol İstinat Duvarlarının Minimum Maliyet ve Ağırlıkla Optimum Tasarımı. DÜBİTED. Ağustos 2018;6(4):1258-1268. doi:10.29130/dubited.435059
Chicago Öztürk, Hasan Tahsin. “Betonarme Konsol İstinat Duvarlarının Minimum Maliyet Ve Ağırlıkla Optimum Tasarımı”. Duzce University Journal of Science and Technology 6, sy. 4 (Ağustos 2018): 1258-68. https://doi.org/10.29130/dubited.435059.
EndNote Öztürk HT (01 Ağustos 2018) Betonarme Konsol İstinat Duvarlarının Minimum Maliyet ve Ağırlıkla Optimum Tasarımı. Duzce University Journal of Science and Technology 6 4 1258–1268.
IEEE H. T. Öztürk, “Betonarme Konsol İstinat Duvarlarının Minimum Maliyet ve Ağırlıkla Optimum Tasarımı”, DÜBİTED, c. 6, sy. 4, ss. 1258–1268, 2018, doi: 10.29130/dubited.435059.
ISNAD Öztürk, Hasan Tahsin. “Betonarme Konsol İstinat Duvarlarının Minimum Maliyet Ve Ağırlıkla Optimum Tasarımı”. Duzce University Journal of Science and Technology 6/4 (Ağustos 2018), 1258-1268. https://doi.org/10.29130/dubited.435059.
JAMA Öztürk HT. Betonarme Konsol İstinat Duvarlarının Minimum Maliyet ve Ağırlıkla Optimum Tasarımı. DÜBİTED. 2018;6:1258–1268.
MLA Öztürk, Hasan Tahsin. “Betonarme Konsol İstinat Duvarlarının Minimum Maliyet Ve Ağırlıkla Optimum Tasarımı”. Duzce University Journal of Science and Technology, c. 6, sy. 4, 2018, ss. 1258-6, doi:10.29130/dubited.435059.
Vancouver Öztürk HT. Betonarme Konsol İstinat Duvarlarının Minimum Maliyet ve Ağırlıkla Optimum Tasarımı. DÜBİTED. 2018;6(4):1258-6.