Araştırma Makalesi
BibTex RIS Kaynak Göster

Optoelectronic Characterization of PCDTBT:PCBM Based Organic Schottky Diodes and Heterojunction Solar Cells

Yıl 2019, , 1644 - 1657, 31.07.2019
https://doi.org/10.29130/dubited.548283

Öz



In this study,
Silver/n-type
Silicon/poly[N-9′-heptadecanyl-2,7–carbazole–alt-5,5-(4′,7′-di–2–thienyl-2′,1′,3′-benzothiadiazole:[6,6]-phenyl-C61-butyric
acid methyl ester/Gold (Ag /n-Si/ PCDTBT: PCBM/Au) organic metal-polymer
semiconductor Schottky barrier diodes were produced using 20% ​​PCDTBT and 80%
PCBM mixture as polymer interface. The current-voltage measurements of the
produced diodes in the 240 - 350 K temperature range and the diode ideality
factor values ​​at these temperatures were observed to vary non-linearly,
depending on the temperature in the range of 1.80 and 2.26. In the second phase
of the study, Indium Tin Okside/PCDTBT:PCBM/Silver (ITO/PCDTBT:PCBM/Ag) organic
solar cells were produced with 20%: 80% PCDTBT: PCBM volumetric ratio, and the
characteristics of the produced solar cell was investigated. As a result of the
investigation, it was observed that the power conversion efficiency of the
produced solar cell was found to be 0.85%.

Kaynakça

  • [1] P. Stallinga, H. L. Gomes, M. Murgia, K. Müllen, " Interface state mapping in a Schottky barrier of the organic semiconductor terrylene," Organic Electronics, vol. 43, no.3, 2002.
  • [2] J. Lei, W. Liang, C. J. Brumlik, C. R. Martin, "A new interfacial polymerization method for forming metal/ conductive polymer Schottky barriers", Synthetic Metals, vol. 47, pp. 351,1992.
  • [3] M. Willander, A. Assadi, C. Svensson, "Polymer based devices their function and characterization," Synthetic Metals, vol. 55, pp. 4099-4104, 1993.
  • [4] R. M. Metzger, “Unimolecular Electrical Rectifiers”, Chem. Rev., vol. 103, no. 9, pp. 3803, (2003).
  • [5] R. K. Gupta, R. A. Singh, "Metal/semiconductive polymer Schottky device," Applied Physics Letters, vol. 16, pp. 253, 2005.
  • [6] H. Noh, A. J. Diaz and S. D. Solares, "Analysis and modification of defective surface aggregates on PCDTBT: PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy", Beılsteın Journal Of Nanotechnology, vol. 8, pp. 579-589, 2017
  • [7] E. Klump, I. Constantinou, T.H. Lai and F. So, "Utilizing Forster resonance energy transfer to extend spectral response of PCDTBT:PCBM solar cells", Organıc Electronıcs, vol. 42, pp. 87-92, 2017.
  • [8] W. Guo, K. Zheng and W. Xie, "Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer", Solar Energy Materıals And Solar Cells, vol. 124, pp. 126-132, 2014.
  • [9] T.Clarke, J. Peet, A. Nattestad, "Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells", Organıc Electronıcs, vol. 13, no. 11, pp. 2639-2646, 2012.
  • [10] P. A.Staniec, A. J. Parnell and A.D.F. Dunbar, "The Nanoscale Morphology of a PCDTBT: PCBM Photovoltaic Blend", Advanced Energy Materials, vol. 1, no. 4, pp. 499-504, 2011.
  • [11] F. Etzold, I. A. Howard and R. Mauer, "Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in PCDTBT:PCBM Photovoltaic Blends", Journal of The Amerıcan Chemıcal Socıety, vol. 133, no. 24, pp. 9469-9479, 2011.
  • [12] F.Lombeckab, S. Müllers, H. KombercS, M. Menkea, A.J. P. Patrick, J.C. Christopher, R.Mc N. Richard H.F. M. Sommer. "Benzoyl side-chains push the open-circuit voltage of PCDTBT/PCBM solar cells beyond 1 V", Organıc Electronıcs, vol. 49 , pp. 142-151, 2017.
  • [13] N. Blouin, A. Michaud and M.Leclerc, "A low-bandgap poly (2,7-carbazole) derivative for use in high-performance solar cell", Advanced Materials, vol. 19, no.17, pp. 2295-2300, 2007.
  • [14] C.H. Peters, I.T. Sachs-Quintana, J.P. Kastrop, S. Beaupré, M. Leclerc, M.D. McGehee "High efficiency polymer solar cells with long operating lifetimes", Advanced Energy Materials, vol. 1, pp. 491, 2011.
  • [15] L. Zhao, S. Zhao, Z. Xu, W. Gong, Q. Yang, X. Fan, X. Xu, "Influence of morphology of PCDTBT:PC71BM on the performance of solar cells", Applied Physics A, vol. 114, no.4, pp. 1361–1368, 2014.
  • [16] M. A. R. Yusoff, H. P. Kim, J. Jang, "Inverted organic solar cells with TiOx cathode and graphene oxide an, ode buffer layers", Solar Energy Materials and Solar Cells, vol.109, pp. 63-69, 2013.
  • [17] Z.Liu, H.Ju, E.-C. Lee, "Improvement of polycarbazole-based organic bulk-heterojunction solar cells using 1,8-diiodooctane", Applied Physics Letters, vol. 103, 2013.
  • [18] J. Liu, L.Chen, B. Gao, X. Cao, Y. Han, Z. Xie, L. Wang,. "Constructing the nanointerpenetrating structure of PCDTBT: PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing", Journal of Materials Chemistry A, vol. 1, pp. 6216, 2013.
  • [19] D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, A. J. Heeger, "Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters", Advanced Energy Materials, vol. 1, pp.766, 2011.
  • [20] Y. Zhu, X. Xu, L. Zhang, J. Chen, Y. Cao, "High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO", Solar Energy Materials and Solar Cells, vol. 97, pp.83-88, 2012.
  • [21] J. Liu, S. Shao, G. Fang, B. Meng, Z. Xie, L. Wang, "High efficiency inverted polymer solar cells with transparent and work function tunable MoO3-Al composite film as cathode buffer layer", Advanced Materials, vol. 24, pp. 2774-2779, 2012.
  • [22] G. Fang, J. Liu, Y. Fu, B. Meng, B. Zhang, Z. Xie, L. Wang, "Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures", Organic Electronics, vol.13, pp. 2733, 2012.
  • [23] K.A. Reinhardt. W. Kern, “Handbook of Silicon Wafer Cleaning Technology”, 2nd ed., William Andrew Publishing, New York, 2008.
  • [24] E.H. Rhoderick, Metal–Semiconductor Contacts, Oxford University Press, Oxford, 1978. pp. 121–136.
  • [25] C. Temirci, B. Bati, M. Saglam, A. Türüt, "High-barrier height Sn/p-Si Schottky diodes with interfacial layer by anodization process", Applied Surface Science, vol.172, pp. 1–7, 2001.
  • [26] M. Campos, L. O. C. Bulhoes, C. A. Lındıno, "Gas-sensitive characteristics of metal/semiconductor polymer Schottky device", Sensors and Actuators A: Physical, vol.87, no. 1-2, pp. 67, 2000.
  • [27] T.P. Nguyen, P. Le Rendu, P. Molinie, V.H. Tran, "Electrical characterization of phenylene-vinylene oligomer based diodes", Synthetic Metals, vol. 85, no. 1–3, pp. 1357-1358, 1997.
  • [28] John Wiley & Sons, "S.M. Sze, Physics of Semiconductor Devices", second ed., New York, 1981. pp. 256.
  • [29] Bogart Theodore F., Jr: Published by USA "Electronic devices and circuits", Merill Publishing Company, 1986, no. 1, pp. 40.
  • [30] S. Chand, J. Kumar, "Current transport in Pd2Si/n-Si(100) Schottky barrier diodes at low temperatures", Applied Physics A, vol. 63, no. 2, pp. 171–178, 1996.
  • [31] K. Shenai, R.W. Dutton, "Current transport mechanisms in atomically abrupt metal-semiconductor interfaces", IEEE Transactions on Electron Devices, vol. 35, no. 4 -35, pp. 468, 1988.
  • [32] A.S. Bhuiyan, A. Martinez, D. Esteve, "A new Richardson plot for non-ideal schottky diodes", Thin Solid Films, vol. 161, pp. 93-100, 1988.
  • [33] R. Hackam, P. Harrop, " Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes ", IEEE Transactions on Electron Devices, vol. 19, no. 12, pp. 1231, 1972.
  • [34] J.H. Werner, H. Guttler, "Barrier inhomogeneities at Schottky contacts", Journal of Applied Physics, vol. 69, pp.1522, 1991.
  • [35] Zs.J. Horvath, " A New Approach to Temperature Dependent Ideality Factors in Schottky Contacts", Materials Research Society, vol. 260, pp. 359, 1992.
  • [36] Jenny Nelson , The Physics of Solar Cells, Imperial College Press. ISBN 978-1-86094-, 2003ch. 340-9, pp. 12.
  • [37] Y.J. Noh, S. I. Na and S.S. Kim, "Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis", Solar Energy Materials & Solar Cells, vol.117, pp. 139-144, 2013.
  • [38] X. Li, W.C.H. Choy, F. Xie, S. Zhang, J. Hou, " Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics", US National Library of Medicine National Institutes of Health, vol. 11, no.25(14), pp. 2051-2055, 2013.
  • [39] X. Li, W.C.H. Choy, F. Xie, S. Zhang, J. Hou, "A Room-temperature solutionprocessed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells", Journal of Materials Chemistry A, vol.1, pp. 6614-6621, 2013.

PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu

Yıl 2019, , 1644 - 1657, 31.07.2019
https://doi.org/10.29130/dubited.548283

Öz

Bu çalışmada Gümüş/n-tipi
Silisyum/poly[N-9′-heptadecanyl-2,7–carbazole–alt-5,5-(4′,7′-di–2–thienyl-2′,1′,3′-benzothiadiazole:[6,6]-phenyl-C61-butyric
acid methyl ester/Altın (Ag/n-Si/PCDTBT:PC61BM/Au) organik
metal-polimer yarıiletken Schottky bariyer diyotları, polimer arayüz olarak %20
PCDTBT ve %80 PCBM karışımı kullanılarak üretilmiştir. Üretilen diyotların 240
- 350 K sıcaklık aralığında akım-voltaj ölçümleri yapılarak, bu sıcaklıklardaki
diyot idealite faktörü değerlerinin 1,80 ve 2,26 aralığında değiştiği
gözlemlenmiştir. Çalışmanın ikinci aşamasında, İndiyum Kalay Oksit/PCDTBT:PCBM/Gümüş
(ITO/PCDTBT:PCBM/Ag) organik güneş hücresi %20:%80 PCDTBT:PCBM hacimsel oranına
sahip olacak şekilde üretilmiş ve güç dönüştürme verimi % 0,85 olarak bulunmuştur. 

Kaynakça

  • [1] P. Stallinga, H. L. Gomes, M. Murgia, K. Müllen, " Interface state mapping in a Schottky barrier of the organic semiconductor terrylene," Organic Electronics, vol. 43, no.3, 2002.
  • [2] J. Lei, W. Liang, C. J. Brumlik, C. R. Martin, "A new interfacial polymerization method for forming metal/ conductive polymer Schottky barriers", Synthetic Metals, vol. 47, pp. 351,1992.
  • [3] M. Willander, A. Assadi, C. Svensson, "Polymer based devices their function and characterization," Synthetic Metals, vol. 55, pp. 4099-4104, 1993.
  • [4] R. M. Metzger, “Unimolecular Electrical Rectifiers”, Chem. Rev., vol. 103, no. 9, pp. 3803, (2003).
  • [5] R. K. Gupta, R. A. Singh, "Metal/semiconductive polymer Schottky device," Applied Physics Letters, vol. 16, pp. 253, 2005.
  • [6] H. Noh, A. J. Diaz and S. D. Solares, "Analysis and modification of defective surface aggregates on PCDTBT: PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy", Beılsteın Journal Of Nanotechnology, vol. 8, pp. 579-589, 2017
  • [7] E. Klump, I. Constantinou, T.H. Lai and F. So, "Utilizing Forster resonance energy transfer to extend spectral response of PCDTBT:PCBM solar cells", Organıc Electronıcs, vol. 42, pp. 87-92, 2017.
  • [8] W. Guo, K. Zheng and W. Xie, "Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer", Solar Energy Materıals And Solar Cells, vol. 124, pp. 126-132, 2014.
  • [9] T.Clarke, J. Peet, A. Nattestad, "Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells", Organıc Electronıcs, vol. 13, no. 11, pp. 2639-2646, 2012.
  • [10] P. A.Staniec, A. J. Parnell and A.D.F. Dunbar, "The Nanoscale Morphology of a PCDTBT: PCBM Photovoltaic Blend", Advanced Energy Materials, vol. 1, no. 4, pp. 499-504, 2011.
  • [11] F. Etzold, I. A. Howard and R. Mauer, "Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in PCDTBT:PCBM Photovoltaic Blends", Journal of The Amerıcan Chemıcal Socıety, vol. 133, no. 24, pp. 9469-9479, 2011.
  • [12] F.Lombeckab, S. Müllers, H. KombercS, M. Menkea, A.J. P. Patrick, J.C. Christopher, R.Mc N. Richard H.F. M. Sommer. "Benzoyl side-chains push the open-circuit voltage of PCDTBT/PCBM solar cells beyond 1 V", Organıc Electronıcs, vol. 49 , pp. 142-151, 2017.
  • [13] N. Blouin, A. Michaud and M.Leclerc, "A low-bandgap poly (2,7-carbazole) derivative for use in high-performance solar cell", Advanced Materials, vol. 19, no.17, pp. 2295-2300, 2007.
  • [14] C.H. Peters, I.T. Sachs-Quintana, J.P. Kastrop, S. Beaupré, M. Leclerc, M.D. McGehee "High efficiency polymer solar cells with long operating lifetimes", Advanced Energy Materials, vol. 1, pp. 491, 2011.
  • [15] L. Zhao, S. Zhao, Z. Xu, W. Gong, Q. Yang, X. Fan, X. Xu, "Influence of morphology of PCDTBT:PC71BM on the performance of solar cells", Applied Physics A, vol. 114, no.4, pp. 1361–1368, 2014.
  • [16] M. A. R. Yusoff, H. P. Kim, J. Jang, "Inverted organic solar cells with TiOx cathode and graphene oxide an, ode buffer layers", Solar Energy Materials and Solar Cells, vol.109, pp. 63-69, 2013.
  • [17] Z.Liu, H.Ju, E.-C. Lee, "Improvement of polycarbazole-based organic bulk-heterojunction solar cells using 1,8-diiodooctane", Applied Physics Letters, vol. 103, 2013.
  • [18] J. Liu, L.Chen, B. Gao, X. Cao, Y. Han, Z. Xie, L. Wang,. "Constructing the nanointerpenetrating structure of PCDTBT: PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing", Journal of Materials Chemistry A, vol. 1, pp. 6216, 2013.
  • [19] D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, A. J. Heeger, "Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters", Advanced Energy Materials, vol. 1, pp.766, 2011.
  • [20] Y. Zhu, X. Xu, L. Zhang, J. Chen, Y. Cao, "High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO", Solar Energy Materials and Solar Cells, vol. 97, pp.83-88, 2012.
  • [21] J. Liu, S. Shao, G. Fang, B. Meng, Z. Xie, L. Wang, "High efficiency inverted polymer solar cells with transparent and work function tunable MoO3-Al composite film as cathode buffer layer", Advanced Materials, vol. 24, pp. 2774-2779, 2012.
  • [22] G. Fang, J. Liu, Y. Fu, B. Meng, B. Zhang, Z. Xie, L. Wang, "Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures", Organic Electronics, vol.13, pp. 2733, 2012.
  • [23] K.A. Reinhardt. W. Kern, “Handbook of Silicon Wafer Cleaning Technology”, 2nd ed., William Andrew Publishing, New York, 2008.
  • [24] E.H. Rhoderick, Metal–Semiconductor Contacts, Oxford University Press, Oxford, 1978. pp. 121–136.
  • [25] C. Temirci, B. Bati, M. Saglam, A. Türüt, "High-barrier height Sn/p-Si Schottky diodes with interfacial layer by anodization process", Applied Surface Science, vol.172, pp. 1–7, 2001.
  • [26] M. Campos, L. O. C. Bulhoes, C. A. Lındıno, "Gas-sensitive characteristics of metal/semiconductor polymer Schottky device", Sensors and Actuators A: Physical, vol.87, no. 1-2, pp. 67, 2000.
  • [27] T.P. Nguyen, P. Le Rendu, P. Molinie, V.H. Tran, "Electrical characterization of phenylene-vinylene oligomer based diodes", Synthetic Metals, vol. 85, no. 1–3, pp. 1357-1358, 1997.
  • [28] John Wiley & Sons, "S.M. Sze, Physics of Semiconductor Devices", second ed., New York, 1981. pp. 256.
  • [29] Bogart Theodore F., Jr: Published by USA "Electronic devices and circuits", Merill Publishing Company, 1986, no. 1, pp. 40.
  • [30] S. Chand, J. Kumar, "Current transport in Pd2Si/n-Si(100) Schottky barrier diodes at low temperatures", Applied Physics A, vol. 63, no. 2, pp. 171–178, 1996.
  • [31] K. Shenai, R.W. Dutton, "Current transport mechanisms in atomically abrupt metal-semiconductor interfaces", IEEE Transactions on Electron Devices, vol. 35, no. 4 -35, pp. 468, 1988.
  • [32] A.S. Bhuiyan, A. Martinez, D. Esteve, "A new Richardson plot for non-ideal schottky diodes", Thin Solid Films, vol. 161, pp. 93-100, 1988.
  • [33] R. Hackam, P. Harrop, " Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes ", IEEE Transactions on Electron Devices, vol. 19, no. 12, pp. 1231, 1972.
  • [34] J.H. Werner, H. Guttler, "Barrier inhomogeneities at Schottky contacts", Journal of Applied Physics, vol. 69, pp.1522, 1991.
  • [35] Zs.J. Horvath, " A New Approach to Temperature Dependent Ideality Factors in Schottky Contacts", Materials Research Society, vol. 260, pp. 359, 1992.
  • [36] Jenny Nelson , The Physics of Solar Cells, Imperial College Press. ISBN 978-1-86094-, 2003ch. 340-9, pp. 12.
  • [37] Y.J. Noh, S. I. Na and S.S. Kim, "Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis", Solar Energy Materials & Solar Cells, vol.117, pp. 139-144, 2013.
  • [38] X. Li, W.C.H. Choy, F. Xie, S. Zhang, J. Hou, " Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics", US National Library of Medicine National Institutes of Health, vol. 11, no.25(14), pp. 2051-2055, 2013.
  • [39] X. Li, W.C.H. Choy, F. Xie, S. Zhang, J. Hou, "A Room-temperature solutionprocessed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells", Journal of Materials Chemistry A, vol.1, pp. 6614-6621, 2013.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kadir Gökşen 0000-0001-8790-582X

Merve Kurtay Bu kişi benim 0000-0002-1247-0611

Özge Tüzün Özmen Bu kişi benim 0000-0002-5204-3737

Muzaffer Şağban Bu kişi benim 0000-0001-8820-5622

Oğuz Köysal 0000-0003-4447-7487

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Gökşen, K., Kurtay, M., Tüzün Özmen, Ö., Şağban, M., vd. (2019). PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu. Duzce University Journal of Science and Technology, 7(3), 1644-1657. https://doi.org/10.29130/dubited.548283
AMA Gökşen K, Kurtay M, Tüzün Özmen Ö, Şağban M, Köysal O. PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu. DÜBİTED. Temmuz 2019;7(3):1644-1657. doi:10.29130/dubited.548283
Chicago Gökşen, Kadir, Merve Kurtay, Özge Tüzün Özmen, Muzaffer Şağban, ve Oğuz Köysal. “PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının Ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu”. Duzce University Journal of Science and Technology 7, sy. 3 (Temmuz 2019): 1644-57. https://doi.org/10.29130/dubited.548283.
EndNote Gökşen K, Kurtay M, Tüzün Özmen Ö, Şağban M, Köysal O (01 Temmuz 2019) PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu. Duzce University Journal of Science and Technology 7 3 1644–1657.
IEEE K. Gökşen, M. Kurtay, Ö. Tüzün Özmen, M. Şağban, ve O. Köysal, “PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu”, DÜBİTED, c. 7, sy. 3, ss. 1644–1657, 2019, doi: 10.29130/dubited.548283.
ISNAD Gökşen, Kadir vd. “PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının Ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu”. Duzce University Journal of Science and Technology 7/3 (Temmuz 2019), 1644-1657. https://doi.org/10.29130/dubited.548283.
JAMA Gökşen K, Kurtay M, Tüzün Özmen Ö, Şağban M, Köysal O. PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu. DÜBİTED. 2019;7:1644–1657.
MLA Gökşen, Kadir vd. “PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının Ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu”. Duzce University Journal of Science and Technology, c. 7, sy. 3, 2019, ss. 1644-57, doi:10.29130/dubited.548283.
Vancouver Gökşen K, Kurtay M, Tüzün Özmen Ö, Şağban M, Köysal O. PCDTBT:PCBM Tabanlı Organik Schottky Diyotlarının ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu. DÜBİTED. 2019;7(3):1644-57.