Araştırma Makalesi
BibTex RIS Kaynak Göster

Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı ve Deneysel Analizi

Yıl 2019, , 1727 - 1743, 31.07.2019
https://doi.org/10.29130/dubited.552951

Öz

Harmoniklere
sebep olan eviriciler endüstride rüzgâr türbinlerinden, kesintisiz güç
kaynaklarına kadar birçok alanda kullanılmaktadır. Harmonikler, sinüsoidal 3
fazlı AC formun bozulmasına sebep olmasının yanı sıra gerilim düşümleri,
kesicilerin hatalı çalışması, motorlarda verimin düşmesi/sarsıntılı çalışma,
trafolarda izolasyon sorunları gibi sorunlara sebep olmaktadır. Bu problemleri
çözmek adına eviriciler üzerinden güç transferini en üst düzeye çıkarmak ve
kaliteli enerji aktarımı için aktif veya pasif çeşitli filtreler
kullanılmaktadır. Bu sebeple eviricilerin
çıkışında L, LC, LCL, LLCL gibi pasif filtrelerin kullanılması kaçınılmaz
olmaktadır.
Bu çalışmada 3 fazlı eviriciler için LCL filtre tasarımı gerçekleştirilmiştir.
Böylece IEEE 519’da belirlenen harmonik sınırlamalarının altında 3 fazlı akım
ve gerilim üretilerek eviricinin kendisinin sebep olduğu harmonikler
azaltılacaktır.

Kaynakça

  • [1] Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J. T., & Westfall, L. (2016). International energy outlook 2016 with projections to 2040 (No. DOE/EIA-0484 (2016)). USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis.
  • [2] Memon, Z. A., Uquaili, M. A., & Unar, M. A. (2016). Harmonics mitigation of industrial power system using passive filters. arXiv preprint arXiv:1605.06684.
  • [3] Li, C. (2018). Unstable operation of photovoltaic inverter from field experiences. IEEE Transactions on Power Delivery, 33(2), 1013-1015.
  • [4] Rockhill, A. A., Liserre, M., Teodorescu, R., & Rodriguez, P. (2011). Grid-filter design for a multimegawatt medium-voltage voltage-source inverter. IEEE Transactions on Industrial Electronics, 58(4), 1205-1217.
  • [5] Habetler, T. G., Naik, R., & Nondahl, T. A. (2002). Design and implementation of an inverter output LC filter used for dv/dt reduction. IEEE Transactions on Power Electronics, 17(3), 327-331.
  • [6] Salha, F., Colas, F., & Guillaud, (2012). Real Time Simulation of an LC Output Filter Grid-Connected Gas Turbine under Voltage Sag Operation
  • [7] Karabacak, M., Kılıç, F., Saraçoğlu, B., Boz, A. F., & Ferikoğlu, A. (2016). Şebeke Bağlantılı Eviriciler için LLCL Filtre Tasarımı; Detaylı Bir Performans Analizi, sayfa: 251-260. Politeknik Dergisi, 19(3).
  • [8] Araújo S. V., Engler A., Sahan B.and Antunes F. L. M.,"LCL filter design for grid-connected NPC inverters in offshore wind turbines", ICPE (ISPE), Daegu, 1133-1138, (2007).
  • [9] Mahfoud, F. Y., Guzun, B. D., Lazaroiu, G. C., & Alhelou, H. H. (2019). Power Quality of Electrical Power Systems. In Handbook of Research on Smart Power System Operation and Control (pp. 265-288). IGI Global.
  • [10] 519-1992 IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,” IEEE Std 519- 1992, 1993.
  • [11] Erduman, A., Kekezoğlu, B., & Durusu, A. (2018). Küçük Güçlü Rüzgâr Santrallerinin Kurulumu ve Şebekeye Etkilerinin Teknik ve Ekonomik Açıdan Değerlendirilmesi: Uygulama Çalışması. Avrupa Bilim ve Teknoloji Dergisi, (13), 112-117.
  • [12] Wei L., Lukaszewski R. A.,"Optimization of the main inductor in a LCL filter for three phase active rectifier", In Industry Applications Conference, 42nd IAS Annual Meeting, Conference Record of the 2007 IEEE, New Orleans, 1816-1822, (2007).
  • [13] Pena-Alzola R., Liserre M., Blaabjerg F., Ordonez M. andYongheng Y.,"LCL-Filter Design for Robust Active Damping in Grid-Connected Converters", IEEE Transactions on Industrial Informatics, 10(4): 2192-2203, (2014).
  • [14] A. Reznik, M. G. Simoes, A. Al-Durra, and S. M. Muyeen, “LCL filter design and performance analysis for grid-interconnected systems,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1225–1232, 2014.
  • [15] Reznik, A., Simoes, M. G., Al-Durra, A., & Muyeen, S. M. (2012, July). LCL filter design and performance analysis for small wind turbine systems. In 2012 IEEE Power Electronics and Machines in Wind Applications (pp. 1-7). IEEE.
  • [16] A. E. W. H. Kahlane, L. Hassaine, and M. Kherchi, “LCL filter design for photovoltaic grid connected systems,” Rev. des Energies Renouvelables (SIENR’14), vol. 8, no. 2, pp. 227–232, 2014.
  • [17] W. Han, Y. Chenzhao, and X. J. ZHANG, “Control of Voltage Source Inverter with an LCL Filter without Voltage Sensors,” Prz. Elektrotechniczny, no. 5, pp. 119–122, 2012.
  • [18] Muhammad, H. R. (2006). Power Electronics Handbook: Devices, Circuits and Applications (Engineering). Academic press.
  • [19] Texas Instruments, “TMS320x2833x Analog-to-Digital Converter (ADC) Module,” October, no. October, 2007.
  • [20] Texas Instruments, “TMS320x2833x Reference Guide: System Control and Interrupts,” Control, no. March, 2010.
  • [21] SEMIKRON, “Adaptor Board 1 SKYPER ® 32PRO R Technical Explanations,” pp. 1–14, 2010.
  • [22] SEMIKRON, “Skm75Gb12T4 Skm75Gb12T4,” pp. 1–5, 2013.
  • [23] SEMIKRON “Skyper 32 Pro R Ul,” pp. 0–17, 2010.
  • [24] Texas Instruments, “CD4504B CMOS Hex Voltage-Level Shifter for TTL-to-CMOS or CMOS-to-CMOS Operation,” Texas Instruments, no. September, 2004.
  • [25] Texas Instruments, “TMS320x2834x Delfino Enhanced Pulse Width Modulator ( ePWM ) Module Reference Guide,” Converter, no. September, 2009.
  • [26] Hasan Hüseyin MUTLU YÜKSEK, “DSP TABANLI PARALEL AKTİF GÜÇ FİLTRESi İLE HARMONİK VE REAKTİF GÜÇ KOMPANZASYONU,” Selcuk Üniversitesi Fen Bilimleri Enstitüsü, 2011.
  • [27] LEM, “Current Transducer LA 55-P,” Data Sheet, pp. 0–1, 2010.
  • [28] LEM, “Voltage Transducer LV 25-P,” Data Sheet, pp. 0–1, 2013.
  • [29] M. U. CUMA, “Digital Signal Processor Based Implementation of Custom Power Device Controllers,” pp. 1–239, 2010.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

İsrafil Fidan Bu kişi benim 0000-0001-8102-3615

Mustafa Dursun 0000-0001-9952-9358

Şehmus Fidan Bu kişi benim 0000-0002-5249-7245

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Fidan, İ., Dursun, M., & Fidan, Ş. (2019). Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı ve Deneysel Analizi. Duzce University Journal of Science and Technology, 7(3), 1727-1743. https://doi.org/10.29130/dubited.552951
AMA Fidan İ, Dursun M, Fidan Ş. Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı ve Deneysel Analizi. DÜBİTED. Temmuz 2019;7(3):1727-1743. doi:10.29130/dubited.552951
Chicago Fidan, İsrafil, Mustafa Dursun, ve Şehmus Fidan. “Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı Ve Deneysel Analizi”. Duzce University Journal of Science and Technology 7, sy. 3 (Temmuz 2019): 1727-43. https://doi.org/10.29130/dubited.552951.
EndNote Fidan İ, Dursun M, Fidan Ş (01 Temmuz 2019) Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı ve Deneysel Analizi. Duzce University Journal of Science and Technology 7 3 1727–1743.
IEEE İ. Fidan, M. Dursun, ve Ş. Fidan, “Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı ve Deneysel Analizi”, DÜBİTED, c. 7, sy. 3, ss. 1727–1743, 2019, doi: 10.29130/dubited.552951.
ISNAD Fidan, İsrafil vd. “Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı Ve Deneysel Analizi”. Duzce University Journal of Science and Technology 7/3 (Temmuz 2019), 1727-1743. https://doi.org/10.29130/dubited.552951.
JAMA Fidan İ, Dursun M, Fidan Ş. Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı ve Deneysel Analizi. DÜBİTED. 2019;7:1727–1743.
MLA Fidan, İsrafil vd. “Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı Ve Deneysel Analizi”. Duzce University Journal of Science and Technology, c. 7, sy. 3, 2019, ss. 1727-43, doi:10.29130/dubited.552951.
Vancouver Fidan İ, Dursun M, Fidan Ş. Üç Fazlı Eviriciler İçin LCL Filtre Tasarımı ve Deneysel Analizi. DÜBİTED. 2019;7(3):1727-43.