Derleme
BibTex RIS Kaynak Göster

Literature Survey on Greenhouse Gases and Mathematical Estimates From Solid Waste Management

Yıl 2020, , 363 - 380, 31.01.2020
https://doi.org/10.29130/dubited.568588

Öz

Although solid wastes and greenhouse gas emissions are
different environmental problems, they are highly dependent. A significant
amount of greenhouse gas emissions are released to the atmosphere in the
process from the collection of solid wastes in the cities to the disposal. This
rate increases especially in disposal operations. Conventional methods such as
wild-landfill, composting and incineration are the main sources of greenhouse
gas. Knowing the amount of emissions that may occur from all these operations
is very important in order to take necessary measures. As a result of the
studies carried out in the world, many mathematical models have been developed
and used for predicting greenhouse gas emissions. With the help of models,
necessary measures can be taken in order to reduce the amount of emissions or
to prevent them completely. In this study, greenhouse gas emissions from waste
management were examined and information about modeling methods was given. With
this study, it is aimed to be the source of studies on modeling of emissions
from future waste management.

Kaynakça

  • [1] United Nations Framework Convention on Climate Change. (2019, 25 Şubat). Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries. [Çevrimiçi]. Erişim: https://unfccc.int/resource/ docs / publications /impacts.pdf.
  • [2] N. Benson, Climate Change, Effects, Encyclopedia of Global Warming and Climate Change, California, USA: SAGE Publications, 2008.
  • [3] U.S. Environmental Protection Agency. (2019, 10 Mart). Climate change indicators in the united states. [Çevrimiçi]. Erişim: https://www.epa.gov/sites/production/files/2016-08/documents/Climate_ indicators_2016.pdf.
  • [4] Nature Conservation Bureau, Ministry of the Environment, Government of Japan. (2019, 22 Şubat). Basic concept of climate change adaptation on biodiversity in Japan basic concept of climate change adaptation on biodiversity in Japan. [Çevrimiçi]. Erişim: https://www.env.go.jp/natüre/biodic/ kikou_tekiou-pamph/adaptation_en.pdf
  • [5] Intergovernmental Panel on Climate Change. (2019, 08 Nisan). Global warming of 1.5°C, An IPCC Special Report on the impacts of global warming of 1.5°C. [Çevrimiçi]. Erişim: https://report.ipcc.ch/sr15 /pdf/sr15_spm_final.pdf
  • [6] U.S. Environmental Protection Agency. (2019, 08 Nisan). Overview of greenhouse gases. [Online]. Erişim: https://www.epa.gov/ghgemissions /overview-greenhouse-gases
  • [7] US National Academy of Sciences. (2019, 10 Şubat). Climate Change Evidence & Causes. [Online]. Erişim: http://dels.nas.edu/resources/static-assets/exec-office-other/climate-change-full.pdf
  • [8] S. Rao, K. Riahi “The role of non-CO2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century”, The Energy Journal, c. 27, ss. 177-200, 2006.
  • [9] Manaki Whenua Landcare Research. (2019, 22 Şubat). Nitrous oxide inventory. [Çevrimiçi]. Erişim:https://www.landcareresearch.co.nz/science/greenhousegases/agriculturalgreenhousegases/nitrus–oxideinventory
  • [10] Phys.org. (2019, 28 Ocak). How the N2O greenhouse gas is decomposed. [Çevrimiçi]. Erişim: https://phys.org/news/2011-08-n2o-greenhouse-gas-decomposed.html
  • [11] The Conversation. (2019, 30 Ocak). Meet N2O, the greenhouse gas 300 times worse than CO2. [Çevrimiçi]. Erişim: http://theconversation.com/meet-n2o-the-greenhouse-gas-300-times-worse-than-co2-35204
  • [12] Science Daily. (2019, 30 Ocak). Emissions of greenhouse gases methane and nitrous oxide underestimated, research suggests. [Çevrimiçi]. Erişim: https://www.sciencedaily.com/releases/2010/07/ 100701090330.htm
  • [13] L. He, GH. Huang, H. Lu, “Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making”, Journal of Hazardous Materials, c. 193, ss. 112-119, 2011.
  • [14] M. Brander, “Greenhouse Gases, CO2, CO2e, and Carbon: What Do All These Terms Mean?” Ecometria, ss.1-3, 2012. [Çevrimiçi]. Erişim: https://ecometrica.com/assets/GHGs-CO2-CO2e-and-Carbon-What-Do-These-Mean-v2.1.pdf
  • [15] Danish Centre for Environment and Energy. (2019, 30 Ocak). Projection of greenhouse gases 2014-2025. [Çevrimiçi]. Erişim: https://dce2.au.dk/pub/SR194.pdf
  • [16] S. Solak, S. Pekküçükşen, “Türkiye'de Kentsel Katı Atık Yönetimi: Karşılaştırmalı Bir Analiz,” MANAS Sosyal Araştırmalar Dergisi, c. 7, s. 3, ss. 653-683, 2018.
  • [17] H. Palabıyık, A. Derya, Kentsel Katı Atıklar ve Yönetimi, Çevre Sorunlarına Çağdaş Yaklaşımlar, İstanbul, Türkiye: Beta, 2004.
  • [18] A. Yavaşcaoğlu, “Tekstil katı atıkları, katı atık oluşumunun azaltılması ve geri kazanımı”. Mesleki Bilimler Dergisi (MBD), c. 1, s. 2, ss. 137-148, 2012.
  • [19] United Nations Environment Programme. (2019, 30 Ocak). Solid waste management (Volume I). [Çevrimiçi]. Erişim: https://www.eawag.ch /fileadmin/Domain/Abteilungen/sandec/E-Learning/ Moocs/Solid_Waste/W2/Solid_waste_management_UNEP_2005.pdf
  • [20] GK. Singh, K. Gupta, S. Chaudhary, “Solid Waste Management: Its Sources, Collection, Transportation and Recycling”, International Journal of Environmental Science and Development, c. 5, s. 4, ss. 347-351, 2014.
  • [21] KO. Demirarslan, BY. Çelik, “Urban solid waste characterization in the east part of Black Sea region”, Global J. Environ. Sci. Manage, c. 4, s. 2, ss. 167-182, 2018.
  • [22] International Solid Waste Association (ISWA). (2019, 10 Şubat). Waste Management. [Çevrimiçi]. Erişim: http://www.sustentabilidad.uai.edu.ar / pdf / ing/waste_management.pdf
  • [23] Solid Waste Management. (2019, 15 Şubat). [Çevrimiçi]. Erişim: http://ec.europa.eu/echo/files/evaluation /watsan2005/annex_files/WEDC/es/ES07CD.pdf
  • [24] P. Alam, K. Ahmade, “Impact of Solid Waste on Health and The Environment”. International Journal of Sustainable Development and Green Economics (IJSDGE), c. 2, ss. 165-168, 2013.
  • [25] C. Visvanathan, “Solid Waste and Climate Change: Perceptions and Possibilities”. Proceeding of the International Conference on Solid Waste Management (Technical, Environmental and Socio-economical Contexts), Khulna, Bangladesh, 2009.
  • [26] United Nations Environment Programme. (2019, 15 Şubat). Waste and Climate Change. [Online]. Erişim: http://www.unep.or.jp /ietc /Publications /spc / Waste & Climate Change / Waste & Climate Change.pdf
  • [27] E. Chalvatzaki, M. Lazaridis, “Estimation of greenhouse gas emissions from landfills: applicatıon to the Akrotiri landfill site (Chania, Greece)”, Global NEST Journal, c. 12, s. 1, ss. 108-116, 2010.
  • [28] S. Manfredi, D. Tonini, TH. Chistensen, H. Scharff. “Landfilling of waste: accounting of greenhouse gases and global warming contributions”, Waste Management & Research, c. 27, s.8, ss. 825-836, 2009.
  • [29] Final report to the European Commission, DG Environment. (2019, 15 Şubat). Waste management options and climate change. [Çevrimiçi]. Erişim: http://ec.europa.eu/environment /waste/ studies/pdf /climate_change.pdf
  • [30] Department of Energy & Climate Change. (2019, 15 Şubat). 2014 UK Greenhouse Gas Emissions, Final Figures. [Çevrimiçi]. Erişim:https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/496942/2014_Final_Emissions_Statistics_Release.pdf
  • [31] Ontario Waste Management Association. (2019, 10 Ocak). Greenhouse Gas Emissions and the Ontario Waste Management Industry. [Çevrimiçi]. Erişim: http://www.cesarnet.ca / sites / default / files / pdf / publications / other /2015-GHGs-Waste-Mgmnt.pdf
  • [32] C. Larney, M. Heil, GA. Ha. (Erişim tarihi). “Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned”, Technical Report, National Renewable Energy Laboratory, 2006. [Çevrimiçi]. Erişim: https://www.nrel.gov/docs /fy07osti / 40428.pdf
  • [33] JE. Bogner, KA. Spokas, JP. Chanton, “Seasonal Greenhouse Gas Emissions (Methane, Carbon Dioxide, Nitrous Oxide) from Engineered Landfills: Daily, Intermediate, and Final California Cover Soils”, Journal of Environmental Quality, c. 40, ss. 1010-1020, 2011.
  • [34] Carbon Neutral Global Standard. (2019, 10 Ocak). [Çevrimiçi]. Erişim: https://www.carbonneutral.com / images / uploads / projects / Bantargebang_Landfill_Gas_Jan15.pdf
  • [35] International Institute for Sustainable Development. (2019, 10 Ocak). Greenhouse Gas Mitigation Options for Pakistan:Waste Sector. [Çevrimiçi]. Erişim: https://cdkn.org/wp-content / uploads / 2016 / 10 / fact-sheet-Pakistan-Waste-sector.pdf
  • [36] EEA greenhouse gas-data viewer. (2019, 01 Mart). [Online]. Erişim: https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
  • [37] R. Sanci, HO. Panarello, CO2 and CH4 Flux Measurements from Landfills-A Case Study: Gualeguaychú Municipal Landfill, Entre Ríos Province, Argentina, Greenhouse Gases-Emission, Measurement and Management. 2012. [Çevrimiçi]. Erişim: http://www.intechopen.com / boks / greenhouse–gases–emission–measurement–and–management/co2–and-ch4–flux–measurements–from-landfill-a–case–study–gualeguaych–municipal-landfill-entre-r-os-p
  • [38] M. Pazoki, RM. Delarestaghi, MR. Rezvanian, R. Ghasemzade, P. Dalaei, “Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program”, Jundishapur J Health Sci. c. 7, s. 4, ss. 20-25, 2015.
  • [39] NJ. Themelis, (2019, 10 Ocak). Waste-to-Energy: Renewable Energy Instead of Greenhouse Gas Emissions. [Çevrimiçi]. Erişim: http://citeseerx.ist.psu.edu/viewdoc/download_doi= 10.1.1.465.6158&rep=rep1&type=pdf
  • [40] SA. Pozza, CSG. Penteado, VG. Criscuolo, “A Greenhouse Gas Inventory in the Municipal Landfill of the City of Limeira, Brazil”, Chemical Engineering Transactions, c. 43, ss. 2083-2088, 2015.
  • [41] A. Bouzonville, S. Atkins, S. Peng, “Review of long term landfill gas monitoring data and potential for use to predict emissions influenced by climate change”, 21th Clean Air Society of Australia and New Zealand Conference, Sydney, Australia, September 2013.
  • [42] K. Wang-Yao, S. Towprayoon, C. Chiemchaisri, SH. Gheewala, A. Nopharatana, “Seasonal Variation of Landfill Methane Emissions from Seven Solid Waste Disposal Sites in Central Thailand”, The 2nd Joint International Conference on Sustainable Energy and Environment (SEE 2006), Bangkok, Thailand, 2006.
  • [43] B. Hutton, “Waste management options to control greenhouse gas emissions – Landfill, compost or incineration?” Paper for the ISWA Conference, Portugal, 2009.
  • [44] EO. Işın, Determination of landfill gas by using methematical models, Yüksek lisans tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, İzmir, 2012.
  • [45] U.S. Environmental Protection Agency. (2019, 10 Ocak). [Çevrimiçi]. Erişim: https://www.epa.gov/sites/production/files/2016-09 / documents / pdh chapter2.pdf
  • [46] H. Sarptaş “Assessment of landfill gas (LFG) energy potential based on estimates of LFG models”, Dokuz Eylül Üniversitesi Mühendislik Fakültesi, Fen ve Mühendislik Dergisi, c.18, s. 3-54, ss. 491-501, 2016.
  • [47] S. Thompson, S. Tanapat, “Modeling Waste Management Options for Greenhouse Gas Reduction”, Journal of Environmental Informatics, c. 6, s. 1, ss.16-24, 2005.
  • [48] S. Kumar, Municipal Solid Waste Management in Developing Countries, Boca Raton, ABD: CRC Press Published, 2016.
  • [49] S. Karayılan, “Modelling and assessment of landfill gas generation at Afyonkarahisar landfill site” Master Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University Ankara, Turkey, 2018.
  • [50] J. Jacobs, H. Scharff, (2019, 10 Ocak). Comparison of methane emission models and methane emission measurements [Çevrimiçi]. Erişim: https:// www.afvalzorg.nl / content / uploads / 2018 / 03 / Comparison-of-Methane-emission-models-to-Methane-emission-measurements.pdf.
  • [51] H. Scharff, J. Jacobs, “Applying guidance for methane emission estimation for landfills”, Waste Management, c. 26, ss. 417-429, 2006.
  • [52] A. Sánchez, A. Artola, X. Font, T. Gea, R. Barrena, D. Gabriel, MÁ. Sánchez-Monedero, A. Roig, ML. Cayuela, C. Mondini, “Greenhouse gas emissions from organic waste composting”, Environmental Chemistry Letters, c. 13, s. 3, ss. 223–238, 2015.
  • [53] Y. Yu, W. Zhang, “Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements”, Waste Management & Research, DOI: 10.1177/0734242X16628982, 2016.
  • [54] Method for estimating greenhouse gas emission reductions from diversion of organic waste from landfills to compost facilities, (2019, 15 Ocak). Industrial Strategies Division Transportation and Toxics Division, [Çevrimiçi]. Erişim: https://www.arb.ca.gov/cc/waste/cerffinal.pdf
  • [55] U.S. Environmental Protection Agency Office of Resource Conservation and Recovery. (2019, 15 Ocak). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM). [Çevrimiçi]. Erişim: https://www.epa.gov /sites /production /files/2016-03 /documents / warm _ v14 _management practices.pdf
  • [56] E. Friedrich, C. Trois, “Quantification of greenhouse gas emissions from waste management processes for municipalities – A comparative review focusing on Africa” Waste Management, c. 31, ss. 1585–1596, 2011.
  • [57] J. Oonk, A. Boom “Landfill gas formation, recovery and emissions, Dutch National Research Programme on Global Air “Pollution and Climate Change”. 1995. [Çevrimiçi]. Erişim: https://publications.tno.nl / publication /.../MEP-1995-203.pdf
  • [59] EO. Taşkan, “Depolama sahası gazlarının yönetimi ve modellemesi”, Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Bölümü, İstanbul, Türkiye, 2001.
  • [60] European Commission. (2019, 15 Ocak). Reference Document on the Best Available Techniques for Waste Incineration. [Çevrimiçi]. Erişim: http://eippcb.jrc.ec.europa eu / reference / BREF / wi _bref_0806.pdf
  • [61] M. Çelebi, B. Dökmetaş, B. Sönmez, N. Akçam, “Belediye Atıklarından Çöp Gazı (LandFill Gas-LFG) Elde Edilerek Elektrik Enerjisi Üretilmesi ve Ülkemizdeki Örneklerinin İncelenmesi” 5th International Symposium on Innovative Technologies in Engineering and Science, Baku-Azerbaijan, 2017.

Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları ile Matematiksel Tahminleri Üzerine Literatür Araştırması

Yıl 2020, , 363 - 380, 31.01.2020
https://doi.org/10.29130/dubited.568588

Öz

Katı atıklar ve sera gazı
emisyonları birbirlerinden farklı çevre problemi gibi algılanmalarına rağmen
birbirlerine oldukça bağımlı bir yapıya sahiptirler. Kentlerde oluşan katı
atıkların toplanmasından bertaraf edilmelerine kadar geçen süreçte, atmosfere
önemli miktarda sera gazı emisyonu salınmaktadır. Bu oran özellikle bertaraf
edilme sürecinde daha da artmaktadır. Vahşi-düzenli depolama, kompostlaştırma,
yakma gibi konvansiyonel yöntemler de başlıca sera gazı kaynaklarıdır. Tüm bu
işlemler sırasında oluşabilecek emisyon miktarlarının bilinmesi, gerekli
önlemlerin alınabilmesi açısından oldukça önemlidir. Dünya genelinde yapılan
çalışmalar sonucunda; sera gazı emisyon miktarlarının öngörülebilmesi için
birçok matematiksel model geliştirilmiş ve kullanılmıştır. Bu modeller
yardımıyla emisyon miktarları tahminleri yapılarak, azaltılma yoluna gidilmesi
ya da tamamen yok edilebilmesi amacıyla gerekli çalışmalar yapılabilmektedir.
Yapılan bu çalışmada atık yönetiminden kaynaklanan sera gazı emisyonları
incelenmiş ve modelleme yöntemleri hakkında bilgiler verilmiş; ileride
yapılabilecek olan atık yönetiminden kaynaklı emisyonların modellenmesi
konusundaki çalışmalara kaynak olması amaçlanmıştır.

Kaynakça

  • [1] United Nations Framework Convention on Climate Change. (2019, 25 Şubat). Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries. [Çevrimiçi]. Erişim: https://unfccc.int/resource/ docs / publications /impacts.pdf.
  • [2] N. Benson, Climate Change, Effects, Encyclopedia of Global Warming and Climate Change, California, USA: SAGE Publications, 2008.
  • [3] U.S. Environmental Protection Agency. (2019, 10 Mart). Climate change indicators in the united states. [Çevrimiçi]. Erişim: https://www.epa.gov/sites/production/files/2016-08/documents/Climate_ indicators_2016.pdf.
  • [4] Nature Conservation Bureau, Ministry of the Environment, Government of Japan. (2019, 22 Şubat). Basic concept of climate change adaptation on biodiversity in Japan basic concept of climate change adaptation on biodiversity in Japan. [Çevrimiçi]. Erişim: https://www.env.go.jp/natüre/biodic/ kikou_tekiou-pamph/adaptation_en.pdf
  • [5] Intergovernmental Panel on Climate Change. (2019, 08 Nisan). Global warming of 1.5°C, An IPCC Special Report on the impacts of global warming of 1.5°C. [Çevrimiçi]. Erişim: https://report.ipcc.ch/sr15 /pdf/sr15_spm_final.pdf
  • [6] U.S. Environmental Protection Agency. (2019, 08 Nisan). Overview of greenhouse gases. [Online]. Erişim: https://www.epa.gov/ghgemissions /overview-greenhouse-gases
  • [7] US National Academy of Sciences. (2019, 10 Şubat). Climate Change Evidence & Causes. [Online]. Erişim: http://dels.nas.edu/resources/static-assets/exec-office-other/climate-change-full.pdf
  • [8] S. Rao, K. Riahi “The role of non-CO2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century”, The Energy Journal, c. 27, ss. 177-200, 2006.
  • [9] Manaki Whenua Landcare Research. (2019, 22 Şubat). Nitrous oxide inventory. [Çevrimiçi]. Erişim:https://www.landcareresearch.co.nz/science/greenhousegases/agriculturalgreenhousegases/nitrus–oxideinventory
  • [10] Phys.org. (2019, 28 Ocak). How the N2O greenhouse gas is decomposed. [Çevrimiçi]. Erişim: https://phys.org/news/2011-08-n2o-greenhouse-gas-decomposed.html
  • [11] The Conversation. (2019, 30 Ocak). Meet N2O, the greenhouse gas 300 times worse than CO2. [Çevrimiçi]. Erişim: http://theconversation.com/meet-n2o-the-greenhouse-gas-300-times-worse-than-co2-35204
  • [12] Science Daily. (2019, 30 Ocak). Emissions of greenhouse gases methane and nitrous oxide underestimated, research suggests. [Çevrimiçi]. Erişim: https://www.sciencedaily.com/releases/2010/07/ 100701090330.htm
  • [13] L. He, GH. Huang, H. Lu, “Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making”, Journal of Hazardous Materials, c. 193, ss. 112-119, 2011.
  • [14] M. Brander, “Greenhouse Gases, CO2, CO2e, and Carbon: What Do All These Terms Mean?” Ecometria, ss.1-3, 2012. [Çevrimiçi]. Erişim: https://ecometrica.com/assets/GHGs-CO2-CO2e-and-Carbon-What-Do-These-Mean-v2.1.pdf
  • [15] Danish Centre for Environment and Energy. (2019, 30 Ocak). Projection of greenhouse gases 2014-2025. [Çevrimiçi]. Erişim: https://dce2.au.dk/pub/SR194.pdf
  • [16] S. Solak, S. Pekküçükşen, “Türkiye'de Kentsel Katı Atık Yönetimi: Karşılaştırmalı Bir Analiz,” MANAS Sosyal Araştırmalar Dergisi, c. 7, s. 3, ss. 653-683, 2018.
  • [17] H. Palabıyık, A. Derya, Kentsel Katı Atıklar ve Yönetimi, Çevre Sorunlarına Çağdaş Yaklaşımlar, İstanbul, Türkiye: Beta, 2004.
  • [18] A. Yavaşcaoğlu, “Tekstil katı atıkları, katı atık oluşumunun azaltılması ve geri kazanımı”. Mesleki Bilimler Dergisi (MBD), c. 1, s. 2, ss. 137-148, 2012.
  • [19] United Nations Environment Programme. (2019, 30 Ocak). Solid waste management (Volume I). [Çevrimiçi]. Erişim: https://www.eawag.ch /fileadmin/Domain/Abteilungen/sandec/E-Learning/ Moocs/Solid_Waste/W2/Solid_waste_management_UNEP_2005.pdf
  • [20] GK. Singh, K. Gupta, S. Chaudhary, “Solid Waste Management: Its Sources, Collection, Transportation and Recycling”, International Journal of Environmental Science and Development, c. 5, s. 4, ss. 347-351, 2014.
  • [21] KO. Demirarslan, BY. Çelik, “Urban solid waste characterization in the east part of Black Sea region”, Global J. Environ. Sci. Manage, c. 4, s. 2, ss. 167-182, 2018.
  • [22] International Solid Waste Association (ISWA). (2019, 10 Şubat). Waste Management. [Çevrimiçi]. Erişim: http://www.sustentabilidad.uai.edu.ar / pdf / ing/waste_management.pdf
  • [23] Solid Waste Management. (2019, 15 Şubat). [Çevrimiçi]. Erişim: http://ec.europa.eu/echo/files/evaluation /watsan2005/annex_files/WEDC/es/ES07CD.pdf
  • [24] P. Alam, K. Ahmade, “Impact of Solid Waste on Health and The Environment”. International Journal of Sustainable Development and Green Economics (IJSDGE), c. 2, ss. 165-168, 2013.
  • [25] C. Visvanathan, “Solid Waste and Climate Change: Perceptions and Possibilities”. Proceeding of the International Conference on Solid Waste Management (Technical, Environmental and Socio-economical Contexts), Khulna, Bangladesh, 2009.
  • [26] United Nations Environment Programme. (2019, 15 Şubat). Waste and Climate Change. [Online]. Erişim: http://www.unep.or.jp /ietc /Publications /spc / Waste & Climate Change / Waste & Climate Change.pdf
  • [27] E. Chalvatzaki, M. Lazaridis, “Estimation of greenhouse gas emissions from landfills: applicatıon to the Akrotiri landfill site (Chania, Greece)”, Global NEST Journal, c. 12, s. 1, ss. 108-116, 2010.
  • [28] S. Manfredi, D. Tonini, TH. Chistensen, H. Scharff. “Landfilling of waste: accounting of greenhouse gases and global warming contributions”, Waste Management & Research, c. 27, s.8, ss. 825-836, 2009.
  • [29] Final report to the European Commission, DG Environment. (2019, 15 Şubat). Waste management options and climate change. [Çevrimiçi]. Erişim: http://ec.europa.eu/environment /waste/ studies/pdf /climate_change.pdf
  • [30] Department of Energy & Climate Change. (2019, 15 Şubat). 2014 UK Greenhouse Gas Emissions, Final Figures. [Çevrimiçi]. Erişim:https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/496942/2014_Final_Emissions_Statistics_Release.pdf
  • [31] Ontario Waste Management Association. (2019, 10 Ocak). Greenhouse Gas Emissions and the Ontario Waste Management Industry. [Çevrimiçi]. Erişim: http://www.cesarnet.ca / sites / default / files / pdf / publications / other /2015-GHGs-Waste-Mgmnt.pdf
  • [32] C. Larney, M. Heil, GA. Ha. (Erişim tarihi). “Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned”, Technical Report, National Renewable Energy Laboratory, 2006. [Çevrimiçi]. Erişim: https://www.nrel.gov/docs /fy07osti / 40428.pdf
  • [33] JE. Bogner, KA. Spokas, JP. Chanton, “Seasonal Greenhouse Gas Emissions (Methane, Carbon Dioxide, Nitrous Oxide) from Engineered Landfills: Daily, Intermediate, and Final California Cover Soils”, Journal of Environmental Quality, c. 40, ss. 1010-1020, 2011.
  • [34] Carbon Neutral Global Standard. (2019, 10 Ocak). [Çevrimiçi]. Erişim: https://www.carbonneutral.com / images / uploads / projects / Bantargebang_Landfill_Gas_Jan15.pdf
  • [35] International Institute for Sustainable Development. (2019, 10 Ocak). Greenhouse Gas Mitigation Options for Pakistan:Waste Sector. [Çevrimiçi]. Erişim: https://cdkn.org/wp-content / uploads / 2016 / 10 / fact-sheet-Pakistan-Waste-sector.pdf
  • [36] EEA greenhouse gas-data viewer. (2019, 01 Mart). [Online]. Erişim: https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
  • [37] R. Sanci, HO. Panarello, CO2 and CH4 Flux Measurements from Landfills-A Case Study: Gualeguaychú Municipal Landfill, Entre Ríos Province, Argentina, Greenhouse Gases-Emission, Measurement and Management. 2012. [Çevrimiçi]. Erişim: http://www.intechopen.com / boks / greenhouse–gases–emission–measurement–and–management/co2–and-ch4–flux–measurements–from-landfill-a–case–study–gualeguaych–municipal-landfill-entre-r-os-p
  • [38] M. Pazoki, RM. Delarestaghi, MR. Rezvanian, R. Ghasemzade, P. Dalaei, “Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program”, Jundishapur J Health Sci. c. 7, s. 4, ss. 20-25, 2015.
  • [39] NJ. Themelis, (2019, 10 Ocak). Waste-to-Energy: Renewable Energy Instead of Greenhouse Gas Emissions. [Çevrimiçi]. Erişim: http://citeseerx.ist.psu.edu/viewdoc/download_doi= 10.1.1.465.6158&rep=rep1&type=pdf
  • [40] SA. Pozza, CSG. Penteado, VG. Criscuolo, “A Greenhouse Gas Inventory in the Municipal Landfill of the City of Limeira, Brazil”, Chemical Engineering Transactions, c. 43, ss. 2083-2088, 2015.
  • [41] A. Bouzonville, S. Atkins, S. Peng, “Review of long term landfill gas monitoring data and potential for use to predict emissions influenced by climate change”, 21th Clean Air Society of Australia and New Zealand Conference, Sydney, Australia, September 2013.
  • [42] K. Wang-Yao, S. Towprayoon, C. Chiemchaisri, SH. Gheewala, A. Nopharatana, “Seasonal Variation of Landfill Methane Emissions from Seven Solid Waste Disposal Sites in Central Thailand”, The 2nd Joint International Conference on Sustainable Energy and Environment (SEE 2006), Bangkok, Thailand, 2006.
  • [43] B. Hutton, “Waste management options to control greenhouse gas emissions – Landfill, compost or incineration?” Paper for the ISWA Conference, Portugal, 2009.
  • [44] EO. Işın, Determination of landfill gas by using methematical models, Yüksek lisans tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, İzmir, 2012.
  • [45] U.S. Environmental Protection Agency. (2019, 10 Ocak). [Çevrimiçi]. Erişim: https://www.epa.gov/sites/production/files/2016-09 / documents / pdh chapter2.pdf
  • [46] H. Sarptaş “Assessment of landfill gas (LFG) energy potential based on estimates of LFG models”, Dokuz Eylül Üniversitesi Mühendislik Fakültesi, Fen ve Mühendislik Dergisi, c.18, s. 3-54, ss. 491-501, 2016.
  • [47] S. Thompson, S. Tanapat, “Modeling Waste Management Options for Greenhouse Gas Reduction”, Journal of Environmental Informatics, c. 6, s. 1, ss.16-24, 2005.
  • [48] S. Kumar, Municipal Solid Waste Management in Developing Countries, Boca Raton, ABD: CRC Press Published, 2016.
  • [49] S. Karayılan, “Modelling and assessment of landfill gas generation at Afyonkarahisar landfill site” Master Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University Ankara, Turkey, 2018.
  • [50] J. Jacobs, H. Scharff, (2019, 10 Ocak). Comparison of methane emission models and methane emission measurements [Çevrimiçi]. Erişim: https:// www.afvalzorg.nl / content / uploads / 2018 / 03 / Comparison-of-Methane-emission-models-to-Methane-emission-measurements.pdf.
  • [51] H. Scharff, J. Jacobs, “Applying guidance for methane emission estimation for landfills”, Waste Management, c. 26, ss. 417-429, 2006.
  • [52] A. Sánchez, A. Artola, X. Font, T. Gea, R. Barrena, D. Gabriel, MÁ. Sánchez-Monedero, A. Roig, ML. Cayuela, C. Mondini, “Greenhouse gas emissions from organic waste composting”, Environmental Chemistry Letters, c. 13, s. 3, ss. 223–238, 2015.
  • [53] Y. Yu, W. Zhang, “Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements”, Waste Management & Research, DOI: 10.1177/0734242X16628982, 2016.
  • [54] Method for estimating greenhouse gas emission reductions from diversion of organic waste from landfills to compost facilities, (2019, 15 Ocak). Industrial Strategies Division Transportation and Toxics Division, [Çevrimiçi]. Erişim: https://www.arb.ca.gov/cc/waste/cerffinal.pdf
  • [55] U.S. Environmental Protection Agency Office of Resource Conservation and Recovery. (2019, 15 Ocak). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM). [Çevrimiçi]. Erişim: https://www.epa.gov /sites /production /files/2016-03 /documents / warm _ v14 _management practices.pdf
  • [56] E. Friedrich, C. Trois, “Quantification of greenhouse gas emissions from waste management processes for municipalities – A comparative review focusing on Africa” Waste Management, c. 31, ss. 1585–1596, 2011.
  • [57] J. Oonk, A. Boom “Landfill gas formation, recovery and emissions, Dutch National Research Programme on Global Air “Pollution and Climate Change”. 1995. [Çevrimiçi]. Erişim: https://publications.tno.nl / publication /.../MEP-1995-203.pdf
  • [59] EO. Taşkan, “Depolama sahası gazlarının yönetimi ve modellemesi”, Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Bölümü, İstanbul, Türkiye, 2001.
  • [60] European Commission. (2019, 15 Ocak). Reference Document on the Best Available Techniques for Waste Incineration. [Çevrimiçi]. Erişim: http://eippcb.jrc.ec.europa eu / reference / BREF / wi _bref_0806.pdf
  • [61] M. Çelebi, B. Dökmetaş, B. Sönmez, N. Akçam, “Belediye Atıklarından Çöp Gazı (LandFill Gas-LFG) Elde Edilerek Elektrik Enerjisi Üretilmesi ve Ülkemizdeki Örneklerinin İncelenmesi” 5th International Symposium on Innovative Technologies in Engineering and Science, Baku-Azerbaijan, 2017.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kazım Onur Demirarslan 0000-0002-1023-7584

Yayımlanma Tarihi 31 Ocak 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Demirarslan, K. O. (2020). Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları ile Matematiksel Tahminleri Üzerine Literatür Araştırması. Duzce University Journal of Science and Technology, 8(1), 363-380. https://doi.org/10.29130/dubited.568588
AMA Demirarslan KO. Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları ile Matematiksel Tahminleri Üzerine Literatür Araştırması. DÜBİTED. Ocak 2020;8(1):363-380. doi:10.29130/dubited.568588
Chicago Demirarslan, Kazım Onur. “Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları Ile Matematiksel Tahminleri Üzerine Literatür Araştırması”. Duzce University Journal of Science and Technology 8, sy. 1 (Ocak 2020): 363-80. https://doi.org/10.29130/dubited.568588.
EndNote Demirarslan KO (01 Ocak 2020) Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları ile Matematiksel Tahminleri Üzerine Literatür Araştırması. Duzce University Journal of Science and Technology 8 1 363–380.
IEEE K. O. Demirarslan, “Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları ile Matematiksel Tahminleri Üzerine Literatür Araştırması”, DÜBİTED, c. 8, sy. 1, ss. 363–380, 2020, doi: 10.29130/dubited.568588.
ISNAD Demirarslan, Kazım Onur. “Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları Ile Matematiksel Tahminleri Üzerine Literatür Araştırması”. Duzce University Journal of Science and Technology 8/1 (Ocak 2020), 363-380. https://doi.org/10.29130/dubited.568588.
JAMA Demirarslan KO. Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları ile Matematiksel Tahminleri Üzerine Literatür Araştırması. DÜBİTED. 2020;8:363–380.
MLA Demirarslan, Kazım Onur. “Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları Ile Matematiksel Tahminleri Üzerine Literatür Araştırması”. Duzce University Journal of Science and Technology, c. 8, sy. 1, 2020, ss. 363-80, doi:10.29130/dubited.568588.
Vancouver Demirarslan KO. Katı Atık Yönetiminden Meydana Gelebilecek Sera Gazları ile Matematiksel Tahminleri Üzerine Literatür Araştırması. DÜBİTED. 2020;8(1):363-80.