Araştırma Makalesi
BibTex RIS Kaynak Göster

Y Katkılı Piramit ZnO Tozlarının Sentez ve Karakterizasyonu

Yıl 2020, , 1634 - 1649, 30.04.2020
https://doi.org/10.29130/dubited.655244

Öz

Mevcut çalışma, nadir toprak metali Y’un ZnO tozuna katkılanmasının meydana getirdiği yapısal değişikliklere odaklanmaktadır. Bu amaçla, farklı Y içeriğine sahip dört ZnO numunesi, yakma reaksiyon metodu kullanarak sentezledik. X-ışını toz kırınımı (XRPD) ve taramalı elektron mikroskopisi (SEM) sonuçları, ZnO’un araştırılan yapısal özellikleri ve morfolojisinin doğrudan Y katkısından etkilendiğini doğrulamaktadır. Her Y katkılı numune için, rasgele-yönelimli piramit şeklinde morfoloji ve Y2O3 azınlık fazının oluşumu gözlendi. Y içeriğinin artmasıyla hem örgü parametrelerinde hem de birim hücre hacminde kademeli bir düşüş tespit edildi. Tüm numunelerin 25–950 °C sıcaklık aralığında termal olarak kararlı olduğu bulundu.

Kaynakça

  • [1] C.M. Lieber, “One-dimensional nanostructures,” Chemistry, Physics & Applications. Solid State Commun., vol. 107, pp. 607-616, 1998.
  • [2] Ö.A. Yıldırım, H.E. Unalan, C. Durucan, “Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles: Structural, optical, and photocatalytic properties,” J. Am. Ceram. Soc, vol. 96, pp.766-773, 2013.
  • [3] X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, “Luminescence and Raman scattering properties of Ag-doped ZnO films,” J. Phys. D: Appl. Phys, vol. 39, pp. 4992, 2006.
  • [4] E. Mosquera, J. Bernal, R.A. Zarate, F. Mendoza, R.S. Katiyar, G. Morell, “Growth and electron field-emission of single-crystalline ZnO nanowires,” Mater. Lett, vol. 93, pp. 326-329, 2013.
  • [5] L. Zhao, P.F. Lu, Z.Y. Yu, X.T. Guo, Y. Shen, H. Ye, G.F. Yuan, L. Zhang, “The electronic and magnetic properties of (Mn,N)-codoped ZnO from first principles,” J. Appl. Phys, vol. 108 pp. 113924, 2010.
  • [6] S. Shao, K. Zheng, K. Zidek, P. Chabera, T. Pullerits, F. Zhang, “Optimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells,” Sol. Energy Mater. Sol. Cells, vol. 118, pp. 43-47, 2013.
  • [7] S. Venkataprasad Bhat, A. Govindaraj, C.N.R. Rao, “Hybrid solar cell based on P3HT–ZnO nanoparticle blend in the inverted device configuration,” Sol. Energy Mater. Sol. Cells, vol. 95, pp. 2318-2321, 2011.
  • [8] J. Luo, Y. Wang, Q. Zhang, “Progress in perovskite solar cells based on ZnO nanostructures,” Sol. Energy, vol. 163, pp. 289-306, 2018.
  • [9] H. Yıldırım, “Exciton binding and excitonic transition energies in wurtzite Zn1-xCdxO/ZnO quantum wells” Superlattices and Microstruct, vol. 120, pp. 344-352, 2018.
  • [10] W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, “Structure and visible luminescence of ZnO nanoparticles,” Mater. Sci. Semic. Proc, vol. 9, pp. 156, 2006.
  • [11] Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, Y. Sui, Y. Lui, Z. Lui, M. Li, G. Wang, C. Shao, Y. Lui, G.Zou, “Structural, electrical and optical properties of yttrium-doped ZnO thin films prepared by sol–gel method,” J. Phys. D: Appl. Phy., vol. 40, pp. 5592, 2007.
  • [12] Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol, vol. 77, pp. 2325-2331, 2011.
  • [13] L. He, Y. Liu, A. Mustapha, M. Lin, “Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum,” Microbiol. Res, vol. 166, pp. 207-215, 2011.
  • [14] V.B. Patravale, S.D. Mandawgade, “Novel cosmetic delivery systems: an application update,” Int. J. Cosmet. Sci, vol. 30, pp. 19-33, 2008.
  • [15] Y.K. Mishra, R. Adelung, “ZnO tetrapod materials for functional applications,” Materials Today, vol. 21, pp. 631-651, 2018.
  • [16] N. Vigneshwaran, S. Kumar, A. Kathe, P. Varadarajan, V. Prasad, “Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites,” Nanotechnology, vol. 17, pp. 5087-5095, 2006.
  • [17] S.K. Gupta, A. Joshi, M. Kaur, “Development of gas sensors using ZnO nanostructures”. J. Chem. Sci., vol. 122, pp. 57-62, 2010.
  • [18] K. Diao, J. Xiao, Z. Zheng, X. Cui, “Enhanced sensing performance and mechanism of CuO nanoparticle-loaded ZnO nanowires: Comparison with ZnO-CuO core-shell nanowires,” Appl. Surf. Sci, vol. 459, pp. 630-638, 2018.
  • [19] Z. Fan, J.G. Lu, “Chemical Sensing with ZnO Nanowire Field-Effect Transistor” IEEE Trans. Nanotechnol, vol. 5, pp. 393-396, 2006.
  • [20] Z. Zhao, W. Lei, X. Zhang, B. Wang, H. Jian, “ZnO-based amperometric enzyme biosensors,” Sensors, vol. 10, pp. 1216-1231, 2010.
  • [21] C.X. Xu, C. Yang, B.X. Gu, S.J. Fang, “Nanostructured ZnO for biosensing applications,” Chin Sci. Bull, vol. 58, pp. 2563-2566, 2013.
  • [22] P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio Guillen, B. Johansson, G.A. Gehring, “Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO,” Nature Mater, vol. 2, pp. 673-637, 2003.
  • [23] A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, “Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation,” Nanoscale Res. Lett, vol. 8, pp. 516, 2013.
  • [24] F. Porter, “Zinc Handbook: Properties, Processing, and Use in Design, Marcel Dekker,” New York, 1991.
  • [25] M.M.C. Chou, D.R. Hang, C. Chen, S.C. Wang, C.Y. Lee, “Nonpolar a-plane ZnO growth and nucleation mechanism on (100) (La, Sr) (Al, Ta)O3 substrate”. Mater. Chem. Phys, vol. 12, pp. 791–795, 2011.
  • [26] B.L. Zhu, X.Z. Zhao, F.H. Suc, G.H. Li, X.G. Wu, J. Wu, R. Wu, “Low temperature annealing effects on the structure and optical properties of ZnO films grown by pulsed laser deposition,” Vacuum, vol. 84, pp. 1280–1286, 2010. [27] Z. Yang, J.H. Lim, S. Chu, Z. Zuo, J.L. Liu, “Study of the effect of plasma power on ZnO thin films growth using electron cyclotron resonance plasma assisted molecular-beam epitaxy,” Appl. Surf. Sci., vol. 255, pp. 3375–3380, 2008.
  • [28] S. Sohal, Y. Alivov, Z. Fan, M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys., vol. 108, pp. 053507–053511, 2010.
  • [29] C. Wu, L. Shen, Q. Huang, Y.C. Zhang, “Synthesis of Na-doped ZnO nanowires and their antibacterial properties,” Powder Technol., vol. 205, pp. 137–142, 2011.
  • [30] S.S. Chang, C.H. Park, S.W. Park, “Improved photoluminescence properties of oxidized anodically etched porous Zn,” Mater. Chem. Phys., vol. 79, pp. 9-14, 2003.
  • [31] Z. Xiao, M. Okada, G. Han, M. Ichimiya, K. Michibayashi, T. Itoh, Y. Neo, T. Aoki, H. Mimura, “Undoped ZnO phosphor with high luminescence efficiency grown by thermal oxidation,” J. Appl. Phys., vol. 104, pp. 073512-073514, 2008.
  • [32] S. Chen, V. Rangari, A. Gedanken, A. Zaban, “Sonochemical synthesis of crystalline nanoporous zinc oxide spheres and their application in dye sensitized solar cells,” Isr. J. Chem., vol. 41, pp. 51-54, 2001.
  • [33] N. Singh, D. Dhruvashi Kaur, R.M. Mehra, A. Kapoor, “Effect of ageing in structural properties of ZnO nanoparticles with pH variation for application in solar cells,” The Open Renewable Energy Journal, vol. 5, pp. 15-18, 2012.
  • [34] J. Zhu, D. Deng, “Ammonia-assisted wet-chemical synthesis of ZnO microrod arrays on substrates for microdroplet transfer,” Langmuir, vol. 33, pp. 6143-6150 2017.
  • [35] Y.L. Wu, A.I.Y. Tok, F.Y.C. Boey, X.T. Zeng, X. H. Zhang, “Surface modification of ZnO nanocrystals,” Appl. Surf. Sci., vol. 253, pp. 5473-5479, 2007.
  • [36] I. Iwantono, R. Yuda, S.K. Md. Saad, M.Y. Abd. Rahman, A.A. Umar, “Structural and properties transformation in ZnO hexagonal nanorod by ruthenium doping and its effect on DSSCs power conversion efficiency,” Superlattices Microstruct, vol. 123, pp. 119-128, 2018.
  • [37] P. Mohanty, B. Kim, J. Park, “Synthesis of single crystalline europium-doped ZnO nanowires,” Mater. Sci. Eng. B., vol. 138, pp. 224-227, 2007.
  • [38] D. Gao, J. Zhang, B. Lyu, L. Lyu, J. Ma, L. Yang, “Poly (quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: An enhanced and durable antibacterial agent,” Carbohydr. Polym., vol. 200, pp. 221-228, 2018.
  • [39] P. Giri, P. Chakrabarti, “Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications,” Superlattices Microstruct., vol. 93, pp. 248-260, 2016.
  • [40] H. Benzarouk, A. Drici, M. Mekhnache, A. Amara, M. Guerionune, J.C. Bernede, H. Bendjffal, “Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP),” Superlattices Microstruct., vol. 52, pp. 594-604, 2012.
  • [41] S. Nasser, H. Elhouichet, “Production of acceptor complexes in sol-gel ZnO thin films by Sb doping,” J. Lumin., vol. 196, pp. 11-19, 2018.
  • [42] M.V. Gallegos, M.A. Peluso, H. Thomas, L.C. Damonte, J.E. Sambeth, “Structural and optical properties of ZnO and manganese-doped ZnO,” J. Alloys Compd., vol. 689, pp. 416-424, 2016.
  • [43] S. Kaya, D. Akcan, O. Ozturk, L. Arda, “Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique,” Ceram. Int., vol. 44, pp. 10306-10314, 2018.
  • [44] K. Siraj, J.Z. Hashmi, S. Naseem, M.S. Rafique, S. Shaukat, “Microstructure and optical properties of rare-earth doped ZnO thin films,” Mater. Today: Proc., vol. 2, pp. 5365-5372, 2015.
  • [45] P.K. Sanoop, S. Anas, S. Ananthakumar, V. Gunasekar, R. Saravanan, P. Ponnusami, “Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation,” Arabian J. Chem., vol. 9, pp. S1618-S1626, 2016.
  • [46] X.B. Li, Q.Q. Zhang, S.Y. Ma, G.X. Wan, F.M. Li, X.L. Xu, “Microstructure optimization and gas sensing improvement of ZnO spherical structure through yttrium doping,” Sens. Actuators B., vol. 195, pp. 526-533, 2014.
  • [47] N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, “Y-doped ZnO nanosheets: Gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator,” Ceram. Int., vol. 44, pp. 8582-8590, 2018.
  • [48] T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, “Sol-gel derived ZnO:Y nanostructured films: Structural and optical study,” Colloids Surf. A., vol. 532, pp. 363-368, 2017.
  • [49] O. Kaygili, “Synthesis and characterization of Na2O–CaO–SiO2 glass–ceramic,” J. Therm. Anal. Calorim., vol. 117, pp. 223-227, 2014.
  • [50] M. Kumar, H. Jeong, A. Kumar, B.P. Singh, D. Lee, “Magnetron-sputtered high performance Y-doped ZnO thin film transistors fabricated at room temperature,” Mater. Sci. Semicond. Process., vol. 71, pp. 204-208, 2017.
  • [51] B.D. Cullity, “Elements of X–ray Diffraction. Addison–Wesley Publishing Company,” Massachusetts. 1978.
  • [52] S. Heo, S.K. Sharma, S. Lee, Y. Lee, C. Kim, B. Lee, H. Lee, D.Y. Kim, “Effects of Y contents on surface, structural, optical, and electrical properties for Y-doped ZnO thin films,” Thin Solid Films., vol. 558, pp. 27-30, 2014.
  • [53] S.K. Sharma, D.Y. Kim, “Microstructure and optical properties of yttrium-doped zinc oxide (YZO) nanobolts synthesized by hydrothermal method,” J. Mater. Sci. Technol., vol. 32 pp. 12-16, 2016.
  • [54] J.Q. Wen, J.M. Zhang, Z.Q. Li, “Structural and electronic properties of Y doped ZnO with different Y concentration,” Optik, vol. 156, pp. 297-302, 2018.
  • [55] M. Gao, J. Yang, L. Yang, Y. Zhang, J. Lang, H. Liu, H. Fan, Y. Sun, Z. Zhang, H. Song, “Enhancement of optical properties and donor-related emissions in Y-doped ZnO,” Superlattices Microstruct., vol. 52, pp. 84-91, 2012.
  • [56] O. Kaygili, I. Ercan, T. Ates, S. Keser, C. Orek, B. Gunduz, T. Seckin, N. Bulut, L. Banares, “An experimental and theoretical investigation of the structure of synthesized ZnO powder,” Chem. Phys., vol. 513, pp. 273-279, 2018.
  • [57] U. Seetawan, S. Jugsujinda, T. Seetawan, A. Ratchasin, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, “Effect of calcinations temperature on crystallography and nanoparticles in ZnO disk,” Mater. Sci. Appl., vol. 2, pp. 1302-1306, 2011.
  • [58] S. Anandan, S. “Muthukumaran, Influence of yttrium on optical, structural and photoluminescence properties of ZnO nanopowders by sol–gel method,” Opt. Mater., vol. 35, pp. 2241-2249, 2013.
  • [59] P. Kumar, B.K. Singh, B.N. Pal, P.C. Pandey, “Correlation between structural, optical and magnetic properties of Mn-doped ZnO,” Appl. Phys. A., vol. 122, pp. 740, 2016.
  • [60] R. Joshi, “Facile photochemical synthesis of ZnO nanoparticles in aqueous solution without capping agents,” Materialia., vol. 2, pp. 104-110, 2018.
  • [61] S. Vijayakumar, B. Vaseeharan, “Antibiofilm, anti cancer and ecotoxicity properties of collagen based ZnO nanoparticles,” Adv. Powder Technol., vol. 29, pp. 2331-2345, 2018.
  • [62] M. Gharagozlou, S. Naghibi, “Sensitization of ZnO nanoparticles by metal–free phthalocyanine”. J. Lumin., vol. 196, pp. 64-68, 2018.
  • [63] A. Dhanalakshmi, A. Palanimurugan, B. Natarajan, “Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles,” Mater. Sci. Eng. C., vol. 90, pp. 95-103, 2018.
  • [64] L.G. da Trindade, G.B. Minervino, A.B. Trench, M.H. Carvalho, M. Assis, M.S. Li, A.J.A. de Oliveira, E.C. Pereira, T.M. Mazzo, E. Longo, “Influence of ionic liquid on the photoelectrochemical properties of ZnO particles,” Ceram. Int., vol. 44, pp. 10393-10401, 2018.
  • [65] G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, “Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries,” Appl. Surf. Sci., vol. 464, pp. 472-478, 2019.
  • [66] P.K. Samanta, S. Basak, “Electrochemical growth of hexagonal ZnO pyramids and their optical property,” Mater. Lett., vol. 83, pp. 97-99, 2012.

Synthesis and Structural Characterization of Y-doped Pyramidal ZnO Powders

Yıl 2020, , 1634 - 1649, 30.04.2020
https://doi.org/10.29130/dubited.655244

Öz

The present study focuses on the structural changes in ZnO powder induced by doping of a rare earth metal of Y. For this aim, we synthesized four ZnO samples with different Y-content using the combustion reaction method. X-ray powder diffraction (XRPD) technique and scanning electron microscopy (SEM) results confirm that the as-investigated structural parameters and morphology of the ZnO structure were affected directly by the concentration of Y dopant. For each Y-doped sample, randomly-oriented pyramidal morphology and the formation of a minority phase of Y2O3 were observed. A gradual increase in both lattice parameters and unit cell volume was detected with increasing Y content. All samples were found to be thermally stable in the temperature interval of 25-950 °C.

Kaynakça

  • [1] C.M. Lieber, “One-dimensional nanostructures,” Chemistry, Physics & Applications. Solid State Commun., vol. 107, pp. 607-616, 1998.
  • [2] Ö.A. Yıldırım, H.E. Unalan, C. Durucan, “Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles: Structural, optical, and photocatalytic properties,” J. Am. Ceram. Soc, vol. 96, pp.766-773, 2013.
  • [3] X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, “Luminescence and Raman scattering properties of Ag-doped ZnO films,” J. Phys. D: Appl. Phys, vol. 39, pp. 4992, 2006.
  • [4] E. Mosquera, J. Bernal, R.A. Zarate, F. Mendoza, R.S. Katiyar, G. Morell, “Growth and electron field-emission of single-crystalline ZnO nanowires,” Mater. Lett, vol. 93, pp. 326-329, 2013.
  • [5] L. Zhao, P.F. Lu, Z.Y. Yu, X.T. Guo, Y. Shen, H. Ye, G.F. Yuan, L. Zhang, “The electronic and magnetic properties of (Mn,N)-codoped ZnO from first principles,” J. Appl. Phys, vol. 108 pp. 113924, 2010.
  • [6] S. Shao, K. Zheng, K. Zidek, P. Chabera, T. Pullerits, F. Zhang, “Optimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells,” Sol. Energy Mater. Sol. Cells, vol. 118, pp. 43-47, 2013.
  • [7] S. Venkataprasad Bhat, A. Govindaraj, C.N.R. Rao, “Hybrid solar cell based on P3HT–ZnO nanoparticle blend in the inverted device configuration,” Sol. Energy Mater. Sol. Cells, vol. 95, pp. 2318-2321, 2011.
  • [8] J. Luo, Y. Wang, Q. Zhang, “Progress in perovskite solar cells based on ZnO nanostructures,” Sol. Energy, vol. 163, pp. 289-306, 2018.
  • [9] H. Yıldırım, “Exciton binding and excitonic transition energies in wurtzite Zn1-xCdxO/ZnO quantum wells” Superlattices and Microstruct, vol. 120, pp. 344-352, 2018.
  • [10] W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, “Structure and visible luminescence of ZnO nanoparticles,” Mater. Sci. Semic. Proc, vol. 9, pp. 156, 2006.
  • [11] Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, Y. Sui, Y. Lui, Z. Lui, M. Li, G. Wang, C. Shao, Y. Lui, G.Zou, “Structural, electrical and optical properties of yttrium-doped ZnO thin films prepared by sol–gel method,” J. Phys. D: Appl. Phy., vol. 40, pp. 5592, 2007.
  • [12] Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol, vol. 77, pp. 2325-2331, 2011.
  • [13] L. He, Y. Liu, A. Mustapha, M. Lin, “Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum,” Microbiol. Res, vol. 166, pp. 207-215, 2011.
  • [14] V.B. Patravale, S.D. Mandawgade, “Novel cosmetic delivery systems: an application update,” Int. J. Cosmet. Sci, vol. 30, pp. 19-33, 2008.
  • [15] Y.K. Mishra, R. Adelung, “ZnO tetrapod materials for functional applications,” Materials Today, vol. 21, pp. 631-651, 2018.
  • [16] N. Vigneshwaran, S. Kumar, A. Kathe, P. Varadarajan, V. Prasad, “Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites,” Nanotechnology, vol. 17, pp. 5087-5095, 2006.
  • [17] S.K. Gupta, A. Joshi, M. Kaur, “Development of gas sensors using ZnO nanostructures”. J. Chem. Sci., vol. 122, pp. 57-62, 2010.
  • [18] K. Diao, J. Xiao, Z. Zheng, X. Cui, “Enhanced sensing performance and mechanism of CuO nanoparticle-loaded ZnO nanowires: Comparison with ZnO-CuO core-shell nanowires,” Appl. Surf. Sci, vol. 459, pp. 630-638, 2018.
  • [19] Z. Fan, J.G. Lu, “Chemical Sensing with ZnO Nanowire Field-Effect Transistor” IEEE Trans. Nanotechnol, vol. 5, pp. 393-396, 2006.
  • [20] Z. Zhao, W. Lei, X. Zhang, B. Wang, H. Jian, “ZnO-based amperometric enzyme biosensors,” Sensors, vol. 10, pp. 1216-1231, 2010.
  • [21] C.X. Xu, C. Yang, B.X. Gu, S.J. Fang, “Nanostructured ZnO for biosensing applications,” Chin Sci. Bull, vol. 58, pp. 2563-2566, 2013.
  • [22] P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio Guillen, B. Johansson, G.A. Gehring, “Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO,” Nature Mater, vol. 2, pp. 673-637, 2003.
  • [23] A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, “Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation,” Nanoscale Res. Lett, vol. 8, pp. 516, 2013.
  • [24] F. Porter, “Zinc Handbook: Properties, Processing, and Use in Design, Marcel Dekker,” New York, 1991.
  • [25] M.M.C. Chou, D.R. Hang, C. Chen, S.C. Wang, C.Y. Lee, “Nonpolar a-plane ZnO growth and nucleation mechanism on (100) (La, Sr) (Al, Ta)O3 substrate”. Mater. Chem. Phys, vol. 12, pp. 791–795, 2011.
  • [26] B.L. Zhu, X.Z. Zhao, F.H. Suc, G.H. Li, X.G. Wu, J. Wu, R. Wu, “Low temperature annealing effects on the structure and optical properties of ZnO films grown by pulsed laser deposition,” Vacuum, vol. 84, pp. 1280–1286, 2010. [27] Z. Yang, J.H. Lim, S. Chu, Z. Zuo, J.L. Liu, “Study of the effect of plasma power on ZnO thin films growth using electron cyclotron resonance plasma assisted molecular-beam epitaxy,” Appl. Surf. Sci., vol. 255, pp. 3375–3380, 2008.
  • [28] S. Sohal, Y. Alivov, Z. Fan, M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys., vol. 108, pp. 053507–053511, 2010.
  • [29] C. Wu, L. Shen, Q. Huang, Y.C. Zhang, “Synthesis of Na-doped ZnO nanowires and their antibacterial properties,” Powder Technol., vol. 205, pp. 137–142, 2011.
  • [30] S.S. Chang, C.H. Park, S.W. Park, “Improved photoluminescence properties of oxidized anodically etched porous Zn,” Mater. Chem. Phys., vol. 79, pp. 9-14, 2003.
  • [31] Z. Xiao, M. Okada, G. Han, M. Ichimiya, K. Michibayashi, T. Itoh, Y. Neo, T. Aoki, H. Mimura, “Undoped ZnO phosphor with high luminescence efficiency grown by thermal oxidation,” J. Appl. Phys., vol. 104, pp. 073512-073514, 2008.
  • [32] S. Chen, V. Rangari, A. Gedanken, A. Zaban, “Sonochemical synthesis of crystalline nanoporous zinc oxide spheres and their application in dye sensitized solar cells,” Isr. J. Chem., vol. 41, pp. 51-54, 2001.
  • [33] N. Singh, D. Dhruvashi Kaur, R.M. Mehra, A. Kapoor, “Effect of ageing in structural properties of ZnO nanoparticles with pH variation for application in solar cells,” The Open Renewable Energy Journal, vol. 5, pp. 15-18, 2012.
  • [34] J. Zhu, D. Deng, “Ammonia-assisted wet-chemical synthesis of ZnO microrod arrays on substrates for microdroplet transfer,” Langmuir, vol. 33, pp. 6143-6150 2017.
  • [35] Y.L. Wu, A.I.Y. Tok, F.Y.C. Boey, X.T. Zeng, X. H. Zhang, “Surface modification of ZnO nanocrystals,” Appl. Surf. Sci., vol. 253, pp. 5473-5479, 2007.
  • [36] I. Iwantono, R. Yuda, S.K. Md. Saad, M.Y. Abd. Rahman, A.A. Umar, “Structural and properties transformation in ZnO hexagonal nanorod by ruthenium doping and its effect on DSSCs power conversion efficiency,” Superlattices Microstruct, vol. 123, pp. 119-128, 2018.
  • [37] P. Mohanty, B. Kim, J. Park, “Synthesis of single crystalline europium-doped ZnO nanowires,” Mater. Sci. Eng. B., vol. 138, pp. 224-227, 2007.
  • [38] D. Gao, J. Zhang, B. Lyu, L. Lyu, J. Ma, L. Yang, “Poly (quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: An enhanced and durable antibacterial agent,” Carbohydr. Polym., vol. 200, pp. 221-228, 2018.
  • [39] P. Giri, P. Chakrabarti, “Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications,” Superlattices Microstruct., vol. 93, pp. 248-260, 2016.
  • [40] H. Benzarouk, A. Drici, M. Mekhnache, A. Amara, M. Guerionune, J.C. Bernede, H. Bendjffal, “Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP),” Superlattices Microstruct., vol. 52, pp. 594-604, 2012.
  • [41] S. Nasser, H. Elhouichet, “Production of acceptor complexes in sol-gel ZnO thin films by Sb doping,” J. Lumin., vol. 196, pp. 11-19, 2018.
  • [42] M.V. Gallegos, M.A. Peluso, H. Thomas, L.C. Damonte, J.E. Sambeth, “Structural and optical properties of ZnO and manganese-doped ZnO,” J. Alloys Compd., vol. 689, pp. 416-424, 2016.
  • [43] S. Kaya, D. Akcan, O. Ozturk, L. Arda, “Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique,” Ceram. Int., vol. 44, pp. 10306-10314, 2018.
  • [44] K. Siraj, J.Z. Hashmi, S. Naseem, M.S. Rafique, S. Shaukat, “Microstructure and optical properties of rare-earth doped ZnO thin films,” Mater. Today: Proc., vol. 2, pp. 5365-5372, 2015.
  • [45] P.K. Sanoop, S. Anas, S. Ananthakumar, V. Gunasekar, R. Saravanan, P. Ponnusami, “Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation,” Arabian J. Chem., vol. 9, pp. S1618-S1626, 2016.
  • [46] X.B. Li, Q.Q. Zhang, S.Y. Ma, G.X. Wan, F.M. Li, X.L. Xu, “Microstructure optimization and gas sensing improvement of ZnO spherical structure through yttrium doping,” Sens. Actuators B., vol. 195, pp. 526-533, 2014.
  • [47] N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, “Y-doped ZnO nanosheets: Gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator,” Ceram. Int., vol. 44, pp. 8582-8590, 2018.
  • [48] T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, “Sol-gel derived ZnO:Y nanostructured films: Structural and optical study,” Colloids Surf. A., vol. 532, pp. 363-368, 2017.
  • [49] O. Kaygili, “Synthesis and characterization of Na2O–CaO–SiO2 glass–ceramic,” J. Therm. Anal. Calorim., vol. 117, pp. 223-227, 2014.
  • [50] M. Kumar, H. Jeong, A. Kumar, B.P. Singh, D. Lee, “Magnetron-sputtered high performance Y-doped ZnO thin film transistors fabricated at room temperature,” Mater. Sci. Semicond. Process., vol. 71, pp. 204-208, 2017.
  • [51] B.D. Cullity, “Elements of X–ray Diffraction. Addison–Wesley Publishing Company,” Massachusetts. 1978.
  • [52] S. Heo, S.K. Sharma, S. Lee, Y. Lee, C. Kim, B. Lee, H. Lee, D.Y. Kim, “Effects of Y contents on surface, structural, optical, and electrical properties for Y-doped ZnO thin films,” Thin Solid Films., vol. 558, pp. 27-30, 2014.
  • [53] S.K. Sharma, D.Y. Kim, “Microstructure and optical properties of yttrium-doped zinc oxide (YZO) nanobolts synthesized by hydrothermal method,” J. Mater. Sci. Technol., vol. 32 pp. 12-16, 2016.
  • [54] J.Q. Wen, J.M. Zhang, Z.Q. Li, “Structural and electronic properties of Y doped ZnO with different Y concentration,” Optik, vol. 156, pp. 297-302, 2018.
  • [55] M. Gao, J. Yang, L. Yang, Y. Zhang, J. Lang, H. Liu, H. Fan, Y. Sun, Z. Zhang, H. Song, “Enhancement of optical properties and donor-related emissions in Y-doped ZnO,” Superlattices Microstruct., vol. 52, pp. 84-91, 2012.
  • [56] O. Kaygili, I. Ercan, T. Ates, S. Keser, C. Orek, B. Gunduz, T. Seckin, N. Bulut, L. Banares, “An experimental and theoretical investigation of the structure of synthesized ZnO powder,” Chem. Phys., vol. 513, pp. 273-279, 2018.
  • [57] U. Seetawan, S. Jugsujinda, T. Seetawan, A. Ratchasin, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, “Effect of calcinations temperature on crystallography and nanoparticles in ZnO disk,” Mater. Sci. Appl., vol. 2, pp. 1302-1306, 2011.
  • [58] S. Anandan, S. “Muthukumaran, Influence of yttrium on optical, structural and photoluminescence properties of ZnO nanopowders by sol–gel method,” Opt. Mater., vol. 35, pp. 2241-2249, 2013.
  • [59] P. Kumar, B.K. Singh, B.N. Pal, P.C. Pandey, “Correlation between structural, optical and magnetic properties of Mn-doped ZnO,” Appl. Phys. A., vol. 122, pp. 740, 2016.
  • [60] R. Joshi, “Facile photochemical synthesis of ZnO nanoparticles in aqueous solution without capping agents,” Materialia., vol. 2, pp. 104-110, 2018.
  • [61] S. Vijayakumar, B. Vaseeharan, “Antibiofilm, anti cancer and ecotoxicity properties of collagen based ZnO nanoparticles,” Adv. Powder Technol., vol. 29, pp. 2331-2345, 2018.
  • [62] M. Gharagozlou, S. Naghibi, “Sensitization of ZnO nanoparticles by metal–free phthalocyanine”. J. Lumin., vol. 196, pp. 64-68, 2018.
  • [63] A. Dhanalakshmi, A. Palanimurugan, B. Natarajan, “Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles,” Mater. Sci. Eng. C., vol. 90, pp. 95-103, 2018.
  • [64] L.G. da Trindade, G.B. Minervino, A.B. Trench, M.H. Carvalho, M. Assis, M.S. Li, A.J.A. de Oliveira, E.C. Pereira, T.M. Mazzo, E. Longo, “Influence of ionic liquid on the photoelectrochemical properties of ZnO particles,” Ceram. Int., vol. 44, pp. 10393-10401, 2018.
  • [65] G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, “Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries,” Appl. Surf. Sci., vol. 464, pp. 472-478, 2019.
  • [66] P.K. Samanta, S. Basak, “Electrochemical growth of hexagonal ZnO pyramids and their optical property,” Mater. Lett., vol. 83, pp. 97-99, 2012.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Omer Kaygili 0000-0002-2321-1455

Hanifi Kebiroglu 0000-0002-6764-3364

Niyazi Bulut 0000-0003-2863-7700

Havva Esma Okur 0000-0003-3439-0716

İsmail Ercan 0000-0001-6490-3792

Filiz Ercan 0000-0002-6478-8920

İ.s. Yahıa 0000-0002-9855-5033

Tankut Ates 0000-0002-4519-2953

Süleyman Köytepe 0000-0002-4788-278X

Turgay Seçkin 0000-0001-8483-7366

Turan Ince 0000-0001-7885-1882

Yayımlanma Tarihi 30 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kaygili, O., Kebiroglu, H., Bulut, N., Okur, H. E., vd. (2020). Synthesis and Structural Characterization of Y-doped Pyramidal ZnO Powders. Duzce University Journal of Science and Technology, 8(2), 1634-1649. https://doi.org/10.29130/dubited.655244
AMA Kaygili O, Kebiroglu H, Bulut N, Okur HE, Ercan İ, Ercan F, Yahıa İ, Ates T, Köytepe S, Seçkin T, Ince T. Synthesis and Structural Characterization of Y-doped Pyramidal ZnO Powders. DÜBİTED. Nisan 2020;8(2):1634-1649. doi:10.29130/dubited.655244
Chicago Kaygili, Omer, Hanifi Kebiroglu, Niyazi Bulut, Havva Esma Okur, İsmail Ercan, Filiz Ercan, İ.s. Yahıa, Tankut Ates, Süleyman Köytepe, Turgay Seçkin, ve Turan Ince. “Synthesis and Structural Characterization of Y-Doped Pyramidal ZnO Powders”. Duzce University Journal of Science and Technology 8, sy. 2 (Nisan 2020): 1634-49. https://doi.org/10.29130/dubited.655244.
EndNote Kaygili O, Kebiroglu H, Bulut N, Okur HE, Ercan İ, Ercan F, Yahıa İ, Ates T, Köytepe S, Seçkin T, Ince T (01 Nisan 2020) Synthesis and Structural Characterization of Y-doped Pyramidal ZnO Powders. Duzce University Journal of Science and Technology 8 2 1634–1649.
IEEE O. Kaygili, “Synthesis and Structural Characterization of Y-doped Pyramidal ZnO Powders”, DÜBİTED, c. 8, sy. 2, ss. 1634–1649, 2020, doi: 10.29130/dubited.655244.
ISNAD Kaygili, Omer vd. “Synthesis and Structural Characterization of Y-Doped Pyramidal ZnO Powders”. Duzce University Journal of Science and Technology 8/2 (Nisan 2020), 1634-1649. https://doi.org/10.29130/dubited.655244.
JAMA Kaygili O, Kebiroglu H, Bulut N, Okur HE, Ercan İ, Ercan F, Yahıa İ, Ates T, Köytepe S, Seçkin T, Ince T. Synthesis and Structural Characterization of Y-doped Pyramidal ZnO Powders. DÜBİTED. 2020;8:1634–1649.
MLA Kaygili, Omer vd. “Synthesis and Structural Characterization of Y-Doped Pyramidal ZnO Powders”. Duzce University Journal of Science and Technology, c. 8, sy. 2, 2020, ss. 1634-49, doi:10.29130/dubited.655244.
Vancouver Kaygili O, Kebiroglu H, Bulut N, Okur HE, Ercan İ, Ercan F, Yahıa İ, Ates T, Köytepe S, Seçkin T, Ince T. Synthesis and Structural Characterization of Y-doped Pyramidal ZnO Powders. DÜBİTED. 2020;8(2):1634-49.