Araştırma Makalesi
BibTex RIS Kaynak Göster

Estimation of Health Risks Associated with Household Dust Contamination in Bolu (Turkey)

Yıl 2020, , 2245 - 2265, 29.10.2020
https://doi.org/10.29130/dubited.706362

Öz

The levels of metals associated with dust is higher in indoor environment as compared to settled dust or soil in the exterior counterpart in the urban centers. The metals can be transferred to human body via inhalation, ingestion and dermal contact upon exposure and pose a significant health problem. The primary objectives of this study are (i) to determine the levels of metals in home dust samples in Bolu, Turkey, (ii) to assess the associated health risk when citizens are exposed to these metals in indoor environment. To end this, sixteen vacuum cleaning bags containing dust were collected from the homes located in the city center of Bolu (Turkey) between November and December 2017. The collected samples were analyzed by employing Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectrometer in terms of major (Al, Ca, Cl, K, Mg, Na, P, S and Si) and minor (As, Ba, Br, Ce, Co, Cr, Cu, Fe, Mn, Nb, Ni, Pb, Rb, Sn, Sr, Ti, Y, Zn and Zr) metals at Turkish Atomic Energy Agency, Radiation and Accelerator Technologies Department, Ankara (Turkey). The measured levels of metals in the samples were ranged from 6.52±1.60 µg g-1 for Y to 10.4±3.3 % for Na. The crustal enrichment factor (EFcrust) was calculated in order to understand the contamination level of household dust samples as compared to soil composition. EFcrust results revealed that there is minimal enrichment of Si, Rb, Ti, Ba, K, Y and Mn in household dust samples with respect to soil composition. On the other hand, Zn, Cl, and S found to be extremely enriched in the samples according to EFcrust values. Health risk assessment due to household dust metal exposure depicted that ingestion of dust particles is the main route of exposure for both adults and children. Overall, the calculated HQ value <1.0 suggesting there is no significant non-carcinogenic health risk for the residents. Cancer risks associated with Pb and Cr were estimated to be within the EPA’s safe limits (1x10-6 and 1.0x10-4).

Destekleyen Kurum

Bulunmamaktadır

Proje Numarası

Bulunmamaktadır

Teşekkür

Authors thank to volunteer homes in this study for providing their vacuum cleaner bags for us. Moreover, authors are grateful to the undergraduate students of Environmental Engineering Department of BAİBU (Sahip Gök, Elif Kemal, Gizem Alagöz, Gülden Atalay, Tarık Arslan, İlyas Sezgin and Hamada Niyigena) for their helps in collecting the samples and filling the questionnaires at the visited homes, and preparing the samples prior to analyses.

Kaynakça

  • [1] M. Talib et al., “Composition of heavy metals and airborne fibers in the indoor environment of a building during renovation,” Environ Monit Assess, pp. 479–489, 2011, doi: 10.1007/s10661-010-1843-3.
  • [2] D. J. Paustenbach, B. L. Finley, and T. F. Long, “The critical role of house dust in understanding the hazards posed by contaminated soils,” Int. J. Toxicol., vol. 16, no. 4–5, pp. 339–362, 1997, doi: 10.1080/109158197227008.
  • [3] A. G. Oomen, P. J. C. M. Janssen, A. Dusseldorp, and C. W. Noorlander, “Exposure to chemicals via house dust,” CMAJ, pp. 1–98, 2008, doi: 10.1503/cmaj.070359.
  • [4] Z. Cheng et al., “Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China,” Sci. Total Environ., vol. 619–620, pp. 621–629, 2018, doi: 10.1016/j.scitotenv.2017.11.144.
  • [5] V. P. Jovanovic S, Carrot F, Deschamps C, Deschamps N, “Journal of Trace and Microprobe Techniques,” J. Trace Microprobe Tech., vol. 13, pp. 463–471, 1995.
  • [6] V. P. Lapitajs G, Greb U, Dunemann L, Begerow J, Moens L, “ICPMS in the determination of trace and ultratrace elements in the human body,” Int Lab, vol. 25, pp. 21–27, 1995.
  • [7] K. N. Fergusson JE, “Trace elements in street and house dust: sources and speciation,” Sci. Total Environ., vol. 100, pp. 125–150, 1991.
  • [8] M. A. Torkmahalleh et al., “Journal of Aerosol Science,” vol. 103, no. October 2016, pp. 132–140, 2017, doi: 10.1016/j.jaerosci.2016.10.011.
  • [9] M. Amouei, S. Gorjinezhad, M. Keles, F. Ozturk, and K. Hopke, “Size segregated PM and its chemical composition emitted from heated corn oil,” Environ. Res., vol. 154, no. November 2016, pp. 101–108, 2017, doi: 10.1016/j.envres.2016.12.025.
  • [10] P. Broomandi et al., “A new exposure route to trace elements in indoor particulate matter,” no. December 2019, pp. 1–8, 2020, doi: 10.1111/ina.12641.
  • [11] M. Amouei Torkmahalleh, S. Gorjinezhad, M. Keles, F. Ozturk, and P. K. Hopke, “Size segregated PM and its chemical composition emitted from heated corn oil,” Environ. Res., vol. 154, no. December 2016, pp. 101–108, 2017, doi: 10.1016/j.envres.2016.12.025.
  • [12] H. Needleman, “Low Level Lead Exposure : History and Discovery,” Ann. Epidemiol., vol. 19, no. 4, pp. 235–238, 2009, doi: 10.1016/j.annepidem.2009.01.022.
  • [13] L. Thomas, L.D., Hodgson, S., Nieuwenhuijsen, M., Jarup, “Early kidney damage in a population exposed to cadmium and other heavy metals,” Environ. Heal. Perspect, vol. 117, pp. 181–184, 2009.
  • [14] J. O. Nriagu, “A Silent Epidemic of Environmental Metal Poisoning ?,” vol. 50, pp. 139–161, 1988.
  • [15] S. K. Flora, S.J.S.; Behari, J.R.; Tandon, “Protective role of trace metals in lead intoxication,” Toxicol. Lett., vol. 13, pp. 51–56, 1982.
  • [16] E. J. Millier, G.D.; Massaro, T.F.; Massaro, “Interaction between lead and essential elements—A review,” Neurotoxicology, vol. 11, pp. 99–120, 1990.
  • [17] J. M. Halliwell, B.; Gutteridge, “Role of free radicals and catalytic metal ions in human disease: An overview,” Methods Enzym., vol. 186, pp. 1–85, 1990.
  • [18] W. Maret and H. H. Sandstead, “Zinc requirements and the risks and benefits of zinc supplementation,” Journal of Trace Elements in Medicine and Biology, vol. 20, pp. 3–18, 2006, doi: 10.1016/j.jtemb.2006.01.006.
  • [19] K. T. Suzuki, “Equimolar Hg-Se complex binds to selenoprotein-P,” Biochem. Biophy. Res. Commun, vol. 237, pp. 7–11, 1997.
  • [20] A. Duda-chodak, “Review paper: The Impact of Nickel on Human Health,” Journal of Elementology, vol. 13, no. 4, pp. 685–696, 2008.
  • [21] T. Stahl et al., “Migration of aluminum from food contact materials to food — a health risk for consumers ? Part I of III : exposure to aluminum , release of aluminum , tolerable weekly intake ( TWI), toxicological effects of aluminum, study design, and methods,” Environ. Sci. Eur., 2017, doi: 10.1186/s12302-017-0116-y.
  • [22] P. Guggenbuhl, “Best Practice & Research Clinical Rheumatology Haemochromatosis : The bone and the joint,” Best Pract. Res. Clin. Rheumatol., vol. 25, no. 5, pp. 649–664, 2011, doi: 10.1016/j.berh.2011.10.014.
  • [23] P. B. Kurt-Karakus, “Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk,” Environ. Int., vol. 50, pp. 47–55, 2012, doi: 10.1016/j.envint.2012.09.011.
  • [24] P. E. Rasmussen, C. Levesque, M. Chénier, H. D. Gardner, H. Jones-otazo, and S. Petrovic, “Science of the Total Environment Canadian House Dust Study : Population-based concentrations , loads and loading rates of arsenic , cadmium , chromium , copper , nickel , lead , and zinc inside urban homes,” Sci. Total Environ., vol. 443, pp. 520–529, 2013, doi: 10.1016/j.scitotenv.2012.11.003.
  • [25] J. Yoshinaga et al., “Lead and other elements in house dust of Japanese residences - Source of lead and health risks due to metal exposure,” Environ. Pollut., vol. 189, pp. 223–228, 2014, doi: 10.1016/j.envpol.2014.03.003.
  • [26] T. P. Whitehead et al., “Persistent organic pollutants in dust from older homes: Learning from lead,” Am. J. Public Health, vol. 104, no. 7, pp. 1320–1326, 2014, doi: 10.2105/AJPH.2013.301835.
  • [27] T. P. Whitehead, S. Crispo Smith, J. S. Park, M. X. Petreas, S. M. Rappaport, and C. Metayer, “Concentrations of Persistent Organic Pollutants in California Children’s Whole Blood and Residential Dust,” Environ. Sci. Technol., vol. 49, no. 15, pp. 9331–9340, 2015, doi: 10.1021/acs.est.5b02078.
  • [28] K. Ö. Dündar MS, Altındağ H, Deryaoğlu N, Özdemir F, “Determination of germanium, silver, barium, potassium, and iron in indoor and outdoor air dust of Sakarya using ICP-OES technique,” SAÜ Fen Bilim. Derg., vol. 15, pp. 105–112, 2011.
  • [29] S. Harrad, S. Hazrati, and C. Ibarra, “Concentrations of Polychlorinated Biphenyls in Indoor Air and Polybrominated Diphenyl Ethers in Indoor Air and Dust in Birmingham, United Kingdom: Implications for Human Exposure,” Environ. Sci. Technol., vol. 40, no. 15, pp. 4633–4638, Aug. 2006, doi: 10.1021/es0609147.
  • [30] S. Harrad et al., “Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States,” Environ. Int., vol. 34, no. 2, pp. 232–238, Feb. 2008, doi: 10.1016/j.envint.2007.08.008.
  • [31] “Turkey Topography Map,” 2020. [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/d/db/Turkey_topo.jpg. Accessed: 23.10.2020.
  • [32] F. Öztürk and M. Keleş, “Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey,” Environ. Sci. Pollut. Res., vol. 23, no. 14, pp. 14157–14172, 2016, doi: 10.1007/s11356-016-6584-6.
  • [33] B. Mason, Principles of geochemistry, 3rd edition, New York, 1966.
  • [34] R. A. Sutherland, “A comparison of geochemical information obtained from two fluvial bed sediment fractions,” vol. 39, no. January, 2000.
  • [35] S. Edition, “Soil Screening Guidance : Technical Background Document Soil Screening Guidance : Technical Background Document,” no. May, 1996.
  • [36] L. Ferreira-baptista and E. De Miguel, “Geochemistry and risk assessment of street dust in Luanda , Angola : A tropical urban environment,” vol. 39, pp. 4501–4512, 2005, doi: 10.1016/j.atmosenv.2005.03.026.
  • [37] N. Zheng, J. Liu, Q. Wang, and Z. Liang, “Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China,” Sci. Total Environ., vol. 408, no. 4, pp. 726–733, 2010, doi: 10.1016/j.scitotenv.2009.10.075.
  • [38] I. Final, “Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual ( Part A ),” vol. I, no. December, 1989.
  • [39] X. Hu et al., “Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China,” Atmos. Environ., vol. 57, pp. 146–152, 2012, doi: 10.1016/j.atmosenv.2012.04.056.
  • [40] N. Zheng, J. Liu, Q. Wang, and Z. Liang, “Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China,” Atmos. Environ., vol. 44, no. 27, pp. 3239–3245, 2010, doi: 10.1016/j.atmosenv.2010.06.002.
  • [41] R. Van den Berg, “Human Exposure to Soil Contamination: a Qualitative and Quantitative Analysis towards Proposals for Human Toxicological Intervention Values,” Bilthoven, 1995.
  • [42] O. 9355.4-24, “Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites,” 2001.
  • [43] C. Lanzerstorfer, “Variations in the composition of house dust by particle size,” J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., vol. 52, no. 8, pp. 770–777, 2017, doi: 10.1080/10934529.2017.1303316.
  • [44] M. B. Khan, M. R. Islam, B. A. Begum, and M. A. Miah, “Trace Element Characterization in Household Dusts in Industrial Areas Along Highways in Bangladesh and their Health Implications,” J. Bangladesh Acad. Sci., vol. 43, no. 1, pp. 47–58, 2019, doi: 10.3329/jbas.v43i1.42233.
  • [45] P. E. Rasmussen, C. Levesque, M. Chénier, and H. D. Gardner, “Contribution of metals in resuspended dust to indoor and personal inhalation exposures: Relationships between PM10 and settled dust,” Build. Environ., vol. 143, no. July, pp. 513–522, 2018, doi: 10.1016/j.buildenv.2018.07.044.
  • [46] A. P. Marinho Reis et al., “Lead and zinc concentrations in household dust and toenails of the residents (Estarreja, Portugal): a source-pathway-fate model,” Environ. Sci. Process. Impacts, vol. 20, no. 9, pp. 1210–1224, 2018, doi: 10.1039/c8em00211h.
  • [47] M. Cempel and G. Nikel, “Nickel : A Review of Its Sources and Environmental Toxicology,” vol. 15, no. 3, pp. 375–382, 2006.
  • [48] M. A. Al-rajhl and W. C. Madany, “Metal Levels in Indoor and Outdoor Dust in Riyadh, Saudi Arabia,” Environ. Int., vol. 22, no. 3, pp. 315–324, 1996.
  • [49] P. E. Rasmussen, K. S. Subramanian, and B. J. Jessiman, “A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada,” Sci. Total Environ., vol. 267, no. 1–3, pp. 125–140, 2001, doi: 10.1016/S0048-9697(00)00775-0.
  • [50] A. M. G. Figueiredo, C. A. Nogueira, M. Saiki, F. M. Milian, and M. Domingos, “Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor,” Environmental Pollution, vol. 145, 2007, doi: 10.1016/j.envpol.2006.03.010.
  • [51] O. Al-madanat, A. Jiries, M. Batarseh, and F. Al-nasir, “Indoor and Outdoor Pollution with Heavy Metals in Al-Karak City, Jordan,” J. Int. Environ. Appl. Sci., vol. 12, no. 2, pp. 131–139, 2017.
  • [52] I. N. Y. Doyi, C. F. Isley, N. S. Soltani, and M. P. Taylor, “Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes,” Environ. Int., vol. 133, no. August, p. 105125, 2019, doi: 10.1016/j.envint.2019.105125.
  • [53] A. Neisi et al., “Study of heavy metal levels in indoor dust and their health risk assessment in children of Ahvaz city, Iran,” Toxin Rev., vol. 35, no. 1–2, pp. 16–23, 2016, doi: 10.1080/15569543.2016.1181656.
  • [54] L. Li et al., “Characterization of residential household dust from Shanghai by particle size and analysis of organophosphorus flame retardants and metals,” Environ. Sci. Eur., vol. 31, no. 1, 2019, doi: 10.1186/s12302-019-0279-9.
  • [55] S. Kamal and M. Hassan, “Metal concentrations and distribution in the household , stairs and entryway dust of some Egyptian homes,” Atmos. Environ., vol. 54, pp. 207–215, 2012, doi: 10.1016/j.atmosenv.2012.02.013.
  • [56] P. B. Larsen, F. Christensen, K. A. Jensen, A. Brinch, and S. H. Mikkelsen, Exposure assessment of nanomaterials in consumer products, no. 1636. 2015.
  • [57] B. N. Nagorcka, “The description and analysis of wool growth,” Aust. J. Agric. Res., vol. 28, no. 4, pp. 737–746, 1977, doi: 10.1071/AR9770737.
  • [58] T. T. Han et al., “Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays : Implications for inhalation exposure,” vol. 155, pp. 85–96, 2017, doi: 10.1016/j.atmosenv.2017.02.016.
  • [59] R. L. Rudnick and S. Gao, “Composition of the Continental Crust,” in Treatise on Geochemistry, Elsevier, 2014, pp. 1–51.
  • [60] T. L. Conner, G. A. Norris, M. S. Landis, and R. W. Williams, “Individual particle analysis of indoor, outdoor, and community samples from the 1998 Baltimore particulate matter study,” Atmos. Environ., vol. 35, no. 23, pp. 3935–3946, Aug. 2001, doi: 10.1016/S1352-2310(01)00191-1.
  • [61] L. Ciacci, B. K. Reck, N. T. Nassar, and T. E. Graedel, “Lost by Design,” Environ. Sci. Technol., vol. 49, no. 16, pp. 9443–9451, Aug. 2015, doi: 10.1021/es505515z.
  • [62] J. J. Schauer, M. J. Kleeman, G. R. Cass, and B. R. T. Simoneit, “Measurement of Emissions from Air Pollution Sources. 1. C 1 through C 29 Organic Compounds from Meat Charbroiling,” Environ. Sci. Technol., vol. 33, no. 10, pp. 1566–1577, May 1999, doi: 10.1021/es980076j.
  • [63] F. Barrio-Parra, E. De Miguel, S. Lázaro-Navas, A. Gómez, and M. Izquierdo, “Indoor Dust Metal Loadings: A Human Health Risk Assessment,” Expo. Heal., vol. 10, no. 1, pp. 41–50, 2018, doi: 10.1007/s12403-017-0244-z.
  • [64] H. H. Li et al., “Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China,” Sci. Total Environ., vol. 586, pp. 1076–1084, 2017, doi: 10.1016/j.scitotenv.2017.02.092.
  • [65] A. Kulshrestha, D. D. Massey, J. Masih, and A. Taneja, “Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a Semi Arid Region of India,” Aerosol Air Qual. Res., vol. 14, no. 6, pp. 1738–1751, 2014, doi: 10.4209/aaqr.2013.05.0147.
  • [66] F. L, “Metals in the indoor environment,” Toxicol.Environ.Chem, vol. 22, pp. 1–7, 1998.
  • [67] B. Hilger, H. Fromme, W. Völkel, and M. Coelhan, “Occurrence of chlorinated paraffins in house dust samples from Bavaria, Germany,” Environ. Pollut., vol. 175, pp. 16–21, 2013, doi: 10.1016/j.envpol.2012.12.011.
  • [68] H. Shang, X. Fan, C. Kubwabo, and P. E. Rasmussen, “Short-chain and medium-chain chlorinated paraffins in Canadian house dust and NIST SRM 2585,” Environ. Sci. Pollut. Res., vol. 26, no. 8, pp. 7453–7462, 2019, doi: 10.1007/s11356-018-04073-2.
  • [69] F. Öztürk and M. Keleş Özgül, “Assessing long term trends of air pollutants and associated health risks imposed on residents in Bolu (Turkey) during winter,” Türkiye Halk Sağlığı Derg., vol. 17, no. 2, pp. 102–122, 2019, doi: 10.20518/tjph.427342.

Bolu’da Ev Tozu ile İlişkili Sağlık Risklerinin Tahmin Edilmesi

Yıl 2020, , 2245 - 2265, 29.10.2020
https://doi.org/10.29130/dubited.706362

Öz

Kent merkezlerinde iç ortamda bulunan tozun metal içeriğinin dış ortamda çökelmiş halde bulunan toz ya da toprak içeriğine kıyasla daha yüksek olduğu bilinmektedir. Metaller insan vücuduna solunum, yutma ve deri teması ile alınabilmekte ve çok ciddi sağlık sorunlarına neden olmaktadır. Bu çalışmanın temel amaçlarını (i) Bolu’da evlerden toplanan tozun metal içeriğinin belirlenmesi, (ii) iç ortamda bu metallere maruz kalan bireylerin sağlık riskinin hesaplanması, olarak özetleyebiliriz. Bu amaçla, Kasım-Aralık 2017 tarihleri arasında Bolu şehir merkezinde bulunan on altı farklı evden toz içeren süpürge torbaları toplanmıştır. Toplanan örnekler Türkiye Atom Enerjisi Kurumu, Radyasyon ve Hızlandırıcı Teknolojileri Departmanı’nda (Ankara) Dalgaboyu Kırınımlı X-Işınları Floresan Spektrometre (WDXRF) cihazı ile majör (Al, Ca, Cl, K, Mg, Na, P, S ve Si) ve eser (As, Ba, Br, Ce, Co, Cr, Cu, Fe, Mn, Nb, Ni, Pb, Rb, Sn, Sr, Ti, Y, Zn ve Zr) metalleri açısından analiz edilmiştir. Ölçülen metal seviyelerinin 6.52±1.60 µg g-1 (Y) ile %10.4±3.3 (Na) arasında değiştiği belirlenmiştir. Toz örneklerinin toprağa göre zenginleştirme faktörü (EFcrust) hesaplanarak örneklerin metaller açısından kontaminasyon düzeyi de bu çalışmada incelenmiştir. Elde edilen sonuçlar Si, Rb, Ti, Ba, K, Y ve Mn metallerinin toprak kompozisyonuna yakın seviyelerde olduğu belirlenirken, Zn, S ve Cl metallerinin toz örneklerinde belirlenen seviyelerinin toprak komposizyonuna kıyasla oldukça yüksek olduğu saptanmıştır. Toz örneklerinin metal seviyeleri dikkate alınarak yapılan sağlık riski değerlendirmesi hem çocuklar hem de yetişkinler için yutmanın ana maruziyet yolu olduğunu göstermiştir. Hesaplan HQ değerinin birden küçük olması, tozda bulunan metallerin bireylerin kanser olmayan risklere maruziyetinin önemli olmadığını işaret etmektedir. Kurşun ve Cr seviyeleri dikkate alınarak hesaplanan kanser riskinin ise EPA’nın güvenilir limiti aralığında (1x10-6 ve 1.0x10-4) olduğu belirlenmiştir.

Proje Numarası

Bulunmamaktadır

Kaynakça

  • [1] M. Talib et al., “Composition of heavy metals and airborne fibers in the indoor environment of a building during renovation,” Environ Monit Assess, pp. 479–489, 2011, doi: 10.1007/s10661-010-1843-3.
  • [2] D. J. Paustenbach, B. L. Finley, and T. F. Long, “The critical role of house dust in understanding the hazards posed by contaminated soils,” Int. J. Toxicol., vol. 16, no. 4–5, pp. 339–362, 1997, doi: 10.1080/109158197227008.
  • [3] A. G. Oomen, P. J. C. M. Janssen, A. Dusseldorp, and C. W. Noorlander, “Exposure to chemicals via house dust,” CMAJ, pp. 1–98, 2008, doi: 10.1503/cmaj.070359.
  • [4] Z. Cheng et al., “Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China,” Sci. Total Environ., vol. 619–620, pp. 621–629, 2018, doi: 10.1016/j.scitotenv.2017.11.144.
  • [5] V. P. Jovanovic S, Carrot F, Deschamps C, Deschamps N, “Journal of Trace and Microprobe Techniques,” J. Trace Microprobe Tech., vol. 13, pp. 463–471, 1995.
  • [6] V. P. Lapitajs G, Greb U, Dunemann L, Begerow J, Moens L, “ICPMS in the determination of trace and ultratrace elements in the human body,” Int Lab, vol. 25, pp. 21–27, 1995.
  • [7] K. N. Fergusson JE, “Trace elements in street and house dust: sources and speciation,” Sci. Total Environ., vol. 100, pp. 125–150, 1991.
  • [8] M. A. Torkmahalleh et al., “Journal of Aerosol Science,” vol. 103, no. October 2016, pp. 132–140, 2017, doi: 10.1016/j.jaerosci.2016.10.011.
  • [9] M. Amouei, S. Gorjinezhad, M. Keles, F. Ozturk, and K. Hopke, “Size segregated PM and its chemical composition emitted from heated corn oil,” Environ. Res., vol. 154, no. November 2016, pp. 101–108, 2017, doi: 10.1016/j.envres.2016.12.025.
  • [10] P. Broomandi et al., “A new exposure route to trace elements in indoor particulate matter,” no. December 2019, pp. 1–8, 2020, doi: 10.1111/ina.12641.
  • [11] M. Amouei Torkmahalleh, S. Gorjinezhad, M. Keles, F. Ozturk, and P. K. Hopke, “Size segregated PM and its chemical composition emitted from heated corn oil,” Environ. Res., vol. 154, no. December 2016, pp. 101–108, 2017, doi: 10.1016/j.envres.2016.12.025.
  • [12] H. Needleman, “Low Level Lead Exposure : History and Discovery,” Ann. Epidemiol., vol. 19, no. 4, pp. 235–238, 2009, doi: 10.1016/j.annepidem.2009.01.022.
  • [13] L. Thomas, L.D., Hodgson, S., Nieuwenhuijsen, M., Jarup, “Early kidney damage in a population exposed to cadmium and other heavy metals,” Environ. Heal. Perspect, vol. 117, pp. 181–184, 2009.
  • [14] J. O. Nriagu, “A Silent Epidemic of Environmental Metal Poisoning ?,” vol. 50, pp. 139–161, 1988.
  • [15] S. K. Flora, S.J.S.; Behari, J.R.; Tandon, “Protective role of trace metals in lead intoxication,” Toxicol. Lett., vol. 13, pp. 51–56, 1982.
  • [16] E. J. Millier, G.D.; Massaro, T.F.; Massaro, “Interaction between lead and essential elements—A review,” Neurotoxicology, vol. 11, pp. 99–120, 1990.
  • [17] J. M. Halliwell, B.; Gutteridge, “Role of free radicals and catalytic metal ions in human disease: An overview,” Methods Enzym., vol. 186, pp. 1–85, 1990.
  • [18] W. Maret and H. H. Sandstead, “Zinc requirements and the risks and benefits of zinc supplementation,” Journal of Trace Elements in Medicine and Biology, vol. 20, pp. 3–18, 2006, doi: 10.1016/j.jtemb.2006.01.006.
  • [19] K. T. Suzuki, “Equimolar Hg-Se complex binds to selenoprotein-P,” Biochem. Biophy. Res. Commun, vol. 237, pp. 7–11, 1997.
  • [20] A. Duda-chodak, “Review paper: The Impact of Nickel on Human Health,” Journal of Elementology, vol. 13, no. 4, pp. 685–696, 2008.
  • [21] T. Stahl et al., “Migration of aluminum from food contact materials to food — a health risk for consumers ? Part I of III : exposure to aluminum , release of aluminum , tolerable weekly intake ( TWI), toxicological effects of aluminum, study design, and methods,” Environ. Sci. Eur., 2017, doi: 10.1186/s12302-017-0116-y.
  • [22] P. Guggenbuhl, “Best Practice & Research Clinical Rheumatology Haemochromatosis : The bone and the joint,” Best Pract. Res. Clin. Rheumatol., vol. 25, no. 5, pp. 649–664, 2011, doi: 10.1016/j.berh.2011.10.014.
  • [23] P. B. Kurt-Karakus, “Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk,” Environ. Int., vol. 50, pp. 47–55, 2012, doi: 10.1016/j.envint.2012.09.011.
  • [24] P. E. Rasmussen, C. Levesque, M. Chénier, H. D. Gardner, H. Jones-otazo, and S. Petrovic, “Science of the Total Environment Canadian House Dust Study : Population-based concentrations , loads and loading rates of arsenic , cadmium , chromium , copper , nickel , lead , and zinc inside urban homes,” Sci. Total Environ., vol. 443, pp. 520–529, 2013, doi: 10.1016/j.scitotenv.2012.11.003.
  • [25] J. Yoshinaga et al., “Lead and other elements in house dust of Japanese residences - Source of lead and health risks due to metal exposure,” Environ. Pollut., vol. 189, pp. 223–228, 2014, doi: 10.1016/j.envpol.2014.03.003.
  • [26] T. P. Whitehead et al., “Persistent organic pollutants in dust from older homes: Learning from lead,” Am. J. Public Health, vol. 104, no. 7, pp. 1320–1326, 2014, doi: 10.2105/AJPH.2013.301835.
  • [27] T. P. Whitehead, S. Crispo Smith, J. S. Park, M. X. Petreas, S. M. Rappaport, and C. Metayer, “Concentrations of Persistent Organic Pollutants in California Children’s Whole Blood and Residential Dust,” Environ. Sci. Technol., vol. 49, no. 15, pp. 9331–9340, 2015, doi: 10.1021/acs.est.5b02078.
  • [28] K. Ö. Dündar MS, Altındağ H, Deryaoğlu N, Özdemir F, “Determination of germanium, silver, barium, potassium, and iron in indoor and outdoor air dust of Sakarya using ICP-OES technique,” SAÜ Fen Bilim. Derg., vol. 15, pp. 105–112, 2011.
  • [29] S. Harrad, S. Hazrati, and C. Ibarra, “Concentrations of Polychlorinated Biphenyls in Indoor Air and Polybrominated Diphenyl Ethers in Indoor Air and Dust in Birmingham, United Kingdom: Implications for Human Exposure,” Environ. Sci. Technol., vol. 40, no. 15, pp. 4633–4638, Aug. 2006, doi: 10.1021/es0609147.
  • [30] S. Harrad et al., “Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States,” Environ. Int., vol. 34, no. 2, pp. 232–238, Feb. 2008, doi: 10.1016/j.envint.2007.08.008.
  • [31] “Turkey Topography Map,” 2020. [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/d/db/Turkey_topo.jpg. Accessed: 23.10.2020.
  • [32] F. Öztürk and M. Keleş, “Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey,” Environ. Sci. Pollut. Res., vol. 23, no. 14, pp. 14157–14172, 2016, doi: 10.1007/s11356-016-6584-6.
  • [33] B. Mason, Principles of geochemistry, 3rd edition, New York, 1966.
  • [34] R. A. Sutherland, “A comparison of geochemical information obtained from two fluvial bed sediment fractions,” vol. 39, no. January, 2000.
  • [35] S. Edition, “Soil Screening Guidance : Technical Background Document Soil Screening Guidance : Technical Background Document,” no. May, 1996.
  • [36] L. Ferreira-baptista and E. De Miguel, “Geochemistry and risk assessment of street dust in Luanda , Angola : A tropical urban environment,” vol. 39, pp. 4501–4512, 2005, doi: 10.1016/j.atmosenv.2005.03.026.
  • [37] N. Zheng, J. Liu, Q. Wang, and Z. Liang, “Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China,” Sci. Total Environ., vol. 408, no. 4, pp. 726–733, 2010, doi: 10.1016/j.scitotenv.2009.10.075.
  • [38] I. Final, “Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual ( Part A ),” vol. I, no. December, 1989.
  • [39] X. Hu et al., “Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China,” Atmos. Environ., vol. 57, pp. 146–152, 2012, doi: 10.1016/j.atmosenv.2012.04.056.
  • [40] N. Zheng, J. Liu, Q. Wang, and Z. Liang, “Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China,” Atmos. Environ., vol. 44, no. 27, pp. 3239–3245, 2010, doi: 10.1016/j.atmosenv.2010.06.002.
  • [41] R. Van den Berg, “Human Exposure to Soil Contamination: a Qualitative and Quantitative Analysis towards Proposals for Human Toxicological Intervention Values,” Bilthoven, 1995.
  • [42] O. 9355.4-24, “Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites,” 2001.
  • [43] C. Lanzerstorfer, “Variations in the composition of house dust by particle size,” J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., vol. 52, no. 8, pp. 770–777, 2017, doi: 10.1080/10934529.2017.1303316.
  • [44] M. B. Khan, M. R. Islam, B. A. Begum, and M. A. Miah, “Trace Element Characterization in Household Dusts in Industrial Areas Along Highways in Bangladesh and their Health Implications,” J. Bangladesh Acad. Sci., vol. 43, no. 1, pp. 47–58, 2019, doi: 10.3329/jbas.v43i1.42233.
  • [45] P. E. Rasmussen, C. Levesque, M. Chénier, and H. D. Gardner, “Contribution of metals in resuspended dust to indoor and personal inhalation exposures: Relationships between PM10 and settled dust,” Build. Environ., vol. 143, no. July, pp. 513–522, 2018, doi: 10.1016/j.buildenv.2018.07.044.
  • [46] A. P. Marinho Reis et al., “Lead and zinc concentrations in household dust and toenails of the residents (Estarreja, Portugal): a source-pathway-fate model,” Environ. Sci. Process. Impacts, vol. 20, no. 9, pp. 1210–1224, 2018, doi: 10.1039/c8em00211h.
  • [47] M. Cempel and G. Nikel, “Nickel : A Review of Its Sources and Environmental Toxicology,” vol. 15, no. 3, pp. 375–382, 2006.
  • [48] M. A. Al-rajhl and W. C. Madany, “Metal Levels in Indoor and Outdoor Dust in Riyadh, Saudi Arabia,” Environ. Int., vol. 22, no. 3, pp. 315–324, 1996.
  • [49] P. E. Rasmussen, K. S. Subramanian, and B. J. Jessiman, “A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada,” Sci. Total Environ., vol. 267, no. 1–3, pp. 125–140, 2001, doi: 10.1016/S0048-9697(00)00775-0.
  • [50] A. M. G. Figueiredo, C. A. Nogueira, M. Saiki, F. M. Milian, and M. Domingos, “Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor,” Environmental Pollution, vol. 145, 2007, doi: 10.1016/j.envpol.2006.03.010.
  • [51] O. Al-madanat, A. Jiries, M. Batarseh, and F. Al-nasir, “Indoor and Outdoor Pollution with Heavy Metals in Al-Karak City, Jordan,” J. Int. Environ. Appl. Sci., vol. 12, no. 2, pp. 131–139, 2017.
  • [52] I. N. Y. Doyi, C. F. Isley, N. S. Soltani, and M. P. Taylor, “Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes,” Environ. Int., vol. 133, no. August, p. 105125, 2019, doi: 10.1016/j.envint.2019.105125.
  • [53] A. Neisi et al., “Study of heavy metal levels in indoor dust and their health risk assessment in children of Ahvaz city, Iran,” Toxin Rev., vol. 35, no. 1–2, pp. 16–23, 2016, doi: 10.1080/15569543.2016.1181656.
  • [54] L. Li et al., “Characterization of residential household dust from Shanghai by particle size and analysis of organophosphorus flame retardants and metals,” Environ. Sci. Eur., vol. 31, no. 1, 2019, doi: 10.1186/s12302-019-0279-9.
  • [55] S. Kamal and M. Hassan, “Metal concentrations and distribution in the household , stairs and entryway dust of some Egyptian homes,” Atmos. Environ., vol. 54, pp. 207–215, 2012, doi: 10.1016/j.atmosenv.2012.02.013.
  • [56] P. B. Larsen, F. Christensen, K. A. Jensen, A. Brinch, and S. H. Mikkelsen, Exposure assessment of nanomaterials in consumer products, no. 1636. 2015.
  • [57] B. N. Nagorcka, “The description and analysis of wool growth,” Aust. J. Agric. Res., vol. 28, no. 4, pp. 737–746, 1977, doi: 10.1071/AR9770737.
  • [58] T. T. Han et al., “Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays : Implications for inhalation exposure,” vol. 155, pp. 85–96, 2017, doi: 10.1016/j.atmosenv.2017.02.016.
  • [59] R. L. Rudnick and S. Gao, “Composition of the Continental Crust,” in Treatise on Geochemistry, Elsevier, 2014, pp. 1–51.
  • [60] T. L. Conner, G. A. Norris, M. S. Landis, and R. W. Williams, “Individual particle analysis of indoor, outdoor, and community samples from the 1998 Baltimore particulate matter study,” Atmos. Environ., vol. 35, no. 23, pp. 3935–3946, Aug. 2001, doi: 10.1016/S1352-2310(01)00191-1.
  • [61] L. Ciacci, B. K. Reck, N. T. Nassar, and T. E. Graedel, “Lost by Design,” Environ. Sci. Technol., vol. 49, no. 16, pp. 9443–9451, Aug. 2015, doi: 10.1021/es505515z.
  • [62] J. J. Schauer, M. J. Kleeman, G. R. Cass, and B. R. T. Simoneit, “Measurement of Emissions from Air Pollution Sources. 1. C 1 through C 29 Organic Compounds from Meat Charbroiling,” Environ. Sci. Technol., vol. 33, no. 10, pp. 1566–1577, May 1999, doi: 10.1021/es980076j.
  • [63] F. Barrio-Parra, E. De Miguel, S. Lázaro-Navas, A. Gómez, and M. Izquierdo, “Indoor Dust Metal Loadings: A Human Health Risk Assessment,” Expo. Heal., vol. 10, no. 1, pp. 41–50, 2018, doi: 10.1007/s12403-017-0244-z.
  • [64] H. H. Li et al., “Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China,” Sci. Total Environ., vol. 586, pp. 1076–1084, 2017, doi: 10.1016/j.scitotenv.2017.02.092.
  • [65] A. Kulshrestha, D. D. Massey, J. Masih, and A. Taneja, “Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a Semi Arid Region of India,” Aerosol Air Qual. Res., vol. 14, no. 6, pp. 1738–1751, 2014, doi: 10.4209/aaqr.2013.05.0147.
  • [66] F. L, “Metals in the indoor environment,” Toxicol.Environ.Chem, vol. 22, pp. 1–7, 1998.
  • [67] B. Hilger, H. Fromme, W. Völkel, and M. Coelhan, “Occurrence of chlorinated paraffins in house dust samples from Bavaria, Germany,” Environ. Pollut., vol. 175, pp. 16–21, 2013, doi: 10.1016/j.envpol.2012.12.011.
  • [68] H. Shang, X. Fan, C. Kubwabo, and P. E. Rasmussen, “Short-chain and medium-chain chlorinated paraffins in Canadian house dust and NIST SRM 2585,” Environ. Sci. Pollut. Res., vol. 26, no. 8, pp. 7453–7462, 2019, doi: 10.1007/s11356-018-04073-2.
  • [69] F. Öztürk and M. Keleş Özgül, “Assessing long term trends of air pollutants and associated health risks imposed on residents in Bolu (Turkey) during winter,” Türkiye Halk Sağlığı Derg., vol. 17, no. 2, pp. 102–122, 2019, doi: 10.20518/tjph.427342.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdullah Zararsız Bu kişi benim 0000-0001-7305-8156

Fatma Öztürk 0000-0001-5179-8444

Proje Numarası Bulunmamaktadır
Yayımlanma Tarihi 29 Ekim 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Zararsız, A., & Öztürk, F. (2020). Estimation of Health Risks Associated with Household Dust Contamination in Bolu (Turkey). Duzce University Journal of Science and Technology, 8(4), 2245-2265. https://doi.org/10.29130/dubited.706362
AMA Zararsız A, Öztürk F. Estimation of Health Risks Associated with Household Dust Contamination in Bolu (Turkey). DÜBİTED. Ekim 2020;8(4):2245-2265. doi:10.29130/dubited.706362
Chicago Zararsız, Abdullah, ve Fatma Öztürk. “Estimation of Health Risks Associated With Household Dust Contamination in Bolu (Turkey)”. Duzce University Journal of Science and Technology 8, sy. 4 (Ekim 2020): 2245-65. https://doi.org/10.29130/dubited.706362.
EndNote Zararsız A, Öztürk F (01 Ekim 2020) Estimation of Health Risks Associated with Household Dust Contamination in Bolu (Turkey). Duzce University Journal of Science and Technology 8 4 2245–2265.
IEEE A. Zararsız ve F. Öztürk, “Estimation of Health Risks Associated with Household Dust Contamination in Bolu (Turkey)”, DÜBİTED, c. 8, sy. 4, ss. 2245–2265, 2020, doi: 10.29130/dubited.706362.
ISNAD Zararsız, Abdullah - Öztürk, Fatma. “Estimation of Health Risks Associated With Household Dust Contamination in Bolu (Turkey)”. Duzce University Journal of Science and Technology 8/4 (Ekim 2020), 2245-2265. https://doi.org/10.29130/dubited.706362.
JAMA Zararsız A, Öztürk F. Estimation of Health Risks Associated with Household Dust Contamination in Bolu (Turkey). DÜBİTED. 2020;8:2245–2265.
MLA Zararsız, Abdullah ve Fatma Öztürk. “Estimation of Health Risks Associated With Household Dust Contamination in Bolu (Turkey)”. Duzce University Journal of Science and Technology, c. 8, sy. 4, 2020, ss. 2245-6, doi:10.29130/dubited.706362.
Vancouver Zararsız A, Öztürk F. Estimation of Health Risks Associated with Household Dust Contamination in Bolu (Turkey). DÜBİTED. 2020;8(4):2245-6.