Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted heteroaryl) acridinedione Derivatives

Yıl 2021, , 1610 - 1620, 31.10.2021
https://doi.org/10.29130/dubited.926881

Öz

An efficient green approach for the synthesis of 9-heteroaryl-acridine-1,8-dione derivatives (3a-f) was accomplished via reactions of dimedone (1) with various heteroaromatic aldehydes (2a-f) and ammonium acetate through one-pot multicomponent reactions in water under mild conditions using ultrasound irradiation in excellent yields. Of the synthesized compounds, 3d-f were novel and this process presents the advantages of high yields and easy work-up procedures. Spectral analyses were accomplished by FTIR, 1H NMR, 13C NMR and LC-MS TOF analyses.

Kaynakça

  • [1] Á. Magyar and Z. Hell, “An efficient one-pot four-component synthesis of 9-aryl hexahydroacridine-1,8-dione derivatives in the presence of a molecular sieves supported iron catalyst,” Catalysis Letters, vol. 149, no. 9, p. 2528-34, 2019.
  • [2] A. Velena, N. Zarkovic, K. Gall Troselj, E. Bisenieks, A. Krauze, J. Poikans, et al., “1,4-dihydropyridine derivatives: dihydronicotinamide analogues—model compounds targeting oxidative stress,” Oxidative medicine and cellular longevity, vol. 2016, p. 35, 2016, Article ID 1892412.
  • [3] D. J. Triggle, “Calcium channel antagonists: clinical uses—past, present and future,” Biochemical pharmacology, vol 74, no.1, p. 1-9, 2007.
  • [4] R. Mannhold, B. Jablonka, W. Voigt, K. Schoenafinger, E. Schraven, “Calcium-and calmodulin-antagonism of elnadipine derivatives: comparative SAR,” European journal of medicinal chemistry, vol. 27, no. 3, p. 229-35, 1992.
  • [5] N. Edraki, A. R. Mehdipour, M. Khoshneviszadeh, R. Miri, “Dihydropyridines: evaluation of their current and future pharmacological applications,” Drug Discovery Today, vol. 14, no. 21-22, p. 1058-66, 2009.
  • [6] A. Shafiee, R. Miri, A. Dehpour, F. Soleymani, “Synthesis and calcium‐channel antagonist activity of Nifedipine analogues containing nitroimidazolyl substituent in guinea‐pig ileal smooth muscle,” Pharmacy and Pharmacology Communications, vol. 2, no. 11, p. 541-3, 1996.
  • [7] F. Pourmorad, F. Hadizadeh, A.S hafiee, “Synthesis and calcium‐channel antagonist activity of 4‐imidazolyl‐1,4‐dihydropyridines,” Pharmacy and Pharmacology Communications, vol. 3, no.4, p.165-8, 1997.
  • [8] I. Antonini, P. Polucci, A. Magnano, S. Martelli, “Synthesis, antitumor cytotoxicity, and DNA-binding of novel N-5,2-di(ω-aminoalkyl)-2,6-dihydropyrazolo[3,4,5-kl]acridine-5-carboxamides,” Journal of medicinal chemistry, vol 44. no. 20, p. 3329-33, 2001.
  • [9] A. Albert, “The acridines: their preparation, physical, chemical, and biological properties and uses,” Edward Arnold, London, 1966.
  • [10] P. Murugan, P. Shanmugasundaram, V. Ramakrishnan, B. Venkatachalapathy, N. Srividya, P. Ramamurthy, et al. “Synthesis and laser properties of 9-alkyl-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione derivatives,” Journal of the Chemical Society, Perkin Transactions 2, vol. 4, p.999-1004, 1998.
  • [11] P. Shanmugasundaram, P. Murugan, V.T. Ramakrishnan, N. Srividya, P. Ramamurthy, “Synthesis of acridinedione derivatives as laser dyes,” Heteroatom Chemistry, vol.7, no. 1, p 17-22, 1996.
  • [12] R. Popielarz, S. Hu, D. Neckers, “Applicability of decahydroacridine-1,8-dione derivatives as fluorescent probes for monitoring of polymerization processes,” Journal of Photochemistry and Photobiology A: Chemistry, vol.111, no. 1, p. 79-83, 1997.
  • [13] A. Papagni, P. Del Buttero, M. Moret, A. Sassella, L. Miozzo, G. Ridolfi, “Synthesis and properties of some derivatives of 1,2,3,4-tetrafluoroacridine for solid state emitting systems,” Chemistry of materials, vol. 15, no. 26, p. 5010-8, 2003.
  • [14] G. Swarnalatha, “1,4-Dihydropyridines: a multifunctional molecule-a review,” Int J Chem Tech Res., vol. 3, p. 75-89, 2011.
  • [15] D. D. Pham, N.T. Le, G. Vo-Thanh, “Fast and efficient Hantzsch synthesis using acid-activated and cation-exchanged montmorillonite catalysts under solvent-free microwave irradiation conditions,” Chemistry Select, vol. 2, no. 36, p. 12041-5, 2017.
  • [16] N. Madankumar, K. Pitchumani, “β‐Cyclodextrin monosulphonic acid promoted multicomponent synthesis of 1,8‐dioxodecahydroacridines in water,” Chemistry Select, vol. 3, no. 39, p.10886-91, 2018.
  • [17] S. Abdolmohammadi, S. Dahi-Azar, M. Mohammadnejad, A. Hosseinian, “A simple and efficient synthesis of 4-arylacridinediones and 6-aryldiindeno[1,2-b:2,-e]pyridinediones using CuI nanoparticles as catalyst under solvent-free conditions,” Combinatorial Chemistry & High Throughput Screening, vol. 20, no. 9, p.773-80, 2017.
  • [18] M. Patil, S. Karhale, A. Kudale, A. Kumbhar, S. More, V. Helavi, “Green protocol for the synthesis of 1,8-dioxo-decahydroacridines by Hantzsch condensation using citric acid as organocatalyst,” Current Science, vol. 116, no. 6, p. 936, 2019.
  • [19] M. Faisal, S. Shahid, S. A. Ghumro, A. Saeed, F. A. Larik, Z. Shaheen, et al., “DABCO–PEG ionic liquid-based synthesis of acridine analogous and its inhibitory activity on alkaline phosphatase,” Synthetic Communications, vol. 48. no. 4, p. 462-72, 2018.
  • [20] M. Kangani, N. Hazeri, M-T. Maghsoodlou, “Cobalt(II)nitrate hexahydrate, as an efficient catalyst for the synthesis of highly substituted piperidines and 1,8-dioxodecahydroacridine derivatives,” Indian Journal of Chemistry-Section B Organic and Medicinal Chemistry, vol. 56, no. 6, p. 663-669, 2017.
  • [21] R. Kardooni, A. R. Kiasat, H. Motamedi, “Designing of a novel dual-function silica-iron oxide hybrid based nanocomposite, Fe3O4@SiO2PEG/NH2, and its application as an eco-catalyst for the solvent-free synthesis of polyhydroacridines and polyhydroquinolines,” Journal of the Taiwan Institute of Chemical Engineer, vol. 81, p. 373-82, 2017.
  • [22] Z. Zarei, B. Akhlaghinia, “Zn II doped and immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-SMTU-ZnII): a novel, green and magnetically recyclable bifunctional nanocatalyst for the one-pot multi-component synthesis of acridinediones under solvent-free conditions,” New Journal of Chemistry, vol. 41, no. 24, p.15485-500, 2017.
  • [23] S. Karhale, M. Patil, G. Rashinkar, V. Helavi, “Green and cost effective protocol for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines by using sawdust sulphonic acid,” Research on Chemical Intermediates, vol. 43, no. 12, p. 7073-86, 2017.
  • [24] G. Shirole, S. Bhalekar, S. Shelke, “N-Butylpyridinium heptachlorodialuminate: A convenient catalyst for the synthesis of acridine 1,8-diones derivatives by microwave assisted Hantzsch reaction. p.1430-5, 2018.
  • [25] A. Djemoui, M. R. Ouahrani, A. Naouri, L. Souli, S-E Rahmani, L. M. Boualem, “Eco-friendly and highly efficient one-pot synthesis of symmetrical and unsymmetrical 1,4-dihydropyridine derivatives using triethylamine as catalyst in ethanol medium,” Heterocyclic Letters, vol. 8, no. 2, p. 455-67, 2018.
  • [26] P. N. Chavan, D. N. Pansare, R. N. Shelke, “Eco‐friendly, ultrasound‐assisted, and facile synthesis of one‐pot multicomponent reaction of acridine‐1,8(2H,5H)‐diones in an aqueous solvent,” Journal of the Chinese Chemical Society, vol. 66, no. 8, p. 822-8, 2019.
  • [27] M. Nikpassand, L. Zare, M. Saberi, “Ultrasound-assisted L-proline catalyzed synthesis of novel derivatives of azo-linked dihydropyridines,” Monatshefte für Chemie-Chemical Monthly, vol. 143, no. 2, p. 289-93, 2012.
  • [28] A. Shockravi, M. Kamali, N. Sharifi, M. Nategholeslam, S. P. Moghanlo, “One-pot and solvent-free synthesis of 1,4-dihydropyridines and 3,4-dihydropyrimidine-2-ones using new synthetic recyclable catalyst via Biginelli and Hantzsch reactions,” Synthetic Communications, vol. 43, no. 11, p. 1477-83, 2013.
  • [29] M. Dashteh, S. Baghery, M. A. Zolfigol, Y. Bayat, A. Asgari, “1,10‐Phenanthrolin‐1‐ium trinitromethanide (1,10‐PHTNM) as a nano molten salt catalyst with Y‐aromatic counter ion: Applications for synthesis of organic compounds,” Chemistry Select, vol. 4, no. 1, p. 337-46, 2019.
  • [30] P. Das, A. Dutta, A. Bhaumik, C. Mukhopadhyay, “Heterogeneous ditopic ZnFe2O4 catalyzed synthesis of 4 H-pyrans: further conversion to 1,4-DHPs and report of functional group interconversion from amide to ester,” Green Chemistry, vol. 16, no. 3, p. 1426-1435, 2014.
  • [31] K. Venkatapathy, C. J. Magesh, G. Lavanya, P. T. Perumal, S. Prema, “Design, synthesis, molecular docking, and spectral studies of new class of carbazolyl polyhydroquinoline derivatives as promising antibacterial agents with noncytotoxicity towards human mononuclear cells from peripheral blood,” Journal of Heterocyclic Chemistry, vol. 57, no. 4, p. 1936-55, 2020.
  • [32] Z. Alirezvani, M. G. Dekamin, E. Valiey, “New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently functionalized MCM-41: an efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives,” ACS omega, vol. 4, no. 24, p. 20618-33, 2019.
  • [33] A. Saini, S. Kumar, J. S. Sandhu, “Hantzsch reaction: Recent advances in Hantzsch 1,4-dihydropyridines,” 2008.
  • [34] Y. Zhang, Z. Zhou, “Solvent-free one-pot synthesis of 1,8-dioxo-decahydroacridines by a [Et3NH][HSO4] catalyzed multicomponent reaction,” Polycyclic Aromatic Compounds, vol. 38, no. 4, p. 329-37, 2018.

Ultrases Destekli 9-(Substitue heteroaril) akridindion Türevlerinin Tek Basamakta Sentezi

Yıl 2021, , 1610 - 1620, 31.10.2021
https://doi.org/10.29130/dubited.926881

Öz

Bu çalışma ile 9-heteroaril akridin-1,8-dion türevlerinin (3a-f) sentezi için yeşil kimya yaklaşımını benimseyen etkili bir yöntem geliştirilmiştir. Dimedon’un (1), çeşitli heteroaromatik aldehitlerle (2a-f) amonyum asetat kullanılarak sulu ortamda ve tek kapta ultrases dalgaları ile reaksiyonları gerçekleştirilmiştir. Bu yöntem ile ılıman koşullar altında, hedeflenen moleküller yüksek verimle elde edilmiştir. Ayrıca yöntemin kolay uygulanabilir olması ve deney sonrası işlemlerinin son derece basit olması en önemli çalışma avantajlarındandır. Sentezlenen bileşiklerden 3d-f orijinal moleküller olup, elde edilen tüm ürünlerin karakterizasyonları FTIR, 1H NMR, 13C NMR ve LC-MS TOF analizleri kullanılarak gerçekleştirilmiştir.

Kaynakça

  • [1] Á. Magyar and Z. Hell, “An efficient one-pot four-component synthesis of 9-aryl hexahydroacridine-1,8-dione derivatives in the presence of a molecular sieves supported iron catalyst,” Catalysis Letters, vol. 149, no. 9, p. 2528-34, 2019.
  • [2] A. Velena, N. Zarkovic, K. Gall Troselj, E. Bisenieks, A. Krauze, J. Poikans, et al., “1,4-dihydropyridine derivatives: dihydronicotinamide analogues—model compounds targeting oxidative stress,” Oxidative medicine and cellular longevity, vol. 2016, p. 35, 2016, Article ID 1892412.
  • [3] D. J. Triggle, “Calcium channel antagonists: clinical uses—past, present and future,” Biochemical pharmacology, vol 74, no.1, p. 1-9, 2007.
  • [4] R. Mannhold, B. Jablonka, W. Voigt, K. Schoenafinger, E. Schraven, “Calcium-and calmodulin-antagonism of elnadipine derivatives: comparative SAR,” European journal of medicinal chemistry, vol. 27, no. 3, p. 229-35, 1992.
  • [5] N. Edraki, A. R. Mehdipour, M. Khoshneviszadeh, R. Miri, “Dihydropyridines: evaluation of their current and future pharmacological applications,” Drug Discovery Today, vol. 14, no. 21-22, p. 1058-66, 2009.
  • [6] A. Shafiee, R. Miri, A. Dehpour, F. Soleymani, “Synthesis and calcium‐channel antagonist activity of Nifedipine analogues containing nitroimidazolyl substituent in guinea‐pig ileal smooth muscle,” Pharmacy and Pharmacology Communications, vol. 2, no. 11, p. 541-3, 1996.
  • [7] F. Pourmorad, F. Hadizadeh, A.S hafiee, “Synthesis and calcium‐channel antagonist activity of 4‐imidazolyl‐1,4‐dihydropyridines,” Pharmacy and Pharmacology Communications, vol. 3, no.4, p.165-8, 1997.
  • [8] I. Antonini, P. Polucci, A. Magnano, S. Martelli, “Synthesis, antitumor cytotoxicity, and DNA-binding of novel N-5,2-di(ω-aminoalkyl)-2,6-dihydropyrazolo[3,4,5-kl]acridine-5-carboxamides,” Journal of medicinal chemistry, vol 44. no. 20, p. 3329-33, 2001.
  • [9] A. Albert, “The acridines: their preparation, physical, chemical, and biological properties and uses,” Edward Arnold, London, 1966.
  • [10] P. Murugan, P. Shanmugasundaram, V. Ramakrishnan, B. Venkatachalapathy, N. Srividya, P. Ramamurthy, et al. “Synthesis and laser properties of 9-alkyl-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione derivatives,” Journal of the Chemical Society, Perkin Transactions 2, vol. 4, p.999-1004, 1998.
  • [11] P. Shanmugasundaram, P. Murugan, V.T. Ramakrishnan, N. Srividya, P. Ramamurthy, “Synthesis of acridinedione derivatives as laser dyes,” Heteroatom Chemistry, vol.7, no. 1, p 17-22, 1996.
  • [12] R. Popielarz, S. Hu, D. Neckers, “Applicability of decahydroacridine-1,8-dione derivatives as fluorescent probes for monitoring of polymerization processes,” Journal of Photochemistry and Photobiology A: Chemistry, vol.111, no. 1, p. 79-83, 1997.
  • [13] A. Papagni, P. Del Buttero, M. Moret, A. Sassella, L. Miozzo, G. Ridolfi, “Synthesis and properties of some derivatives of 1,2,3,4-tetrafluoroacridine for solid state emitting systems,” Chemistry of materials, vol. 15, no. 26, p. 5010-8, 2003.
  • [14] G. Swarnalatha, “1,4-Dihydropyridines: a multifunctional molecule-a review,” Int J Chem Tech Res., vol. 3, p. 75-89, 2011.
  • [15] D. D. Pham, N.T. Le, G. Vo-Thanh, “Fast and efficient Hantzsch synthesis using acid-activated and cation-exchanged montmorillonite catalysts under solvent-free microwave irradiation conditions,” Chemistry Select, vol. 2, no. 36, p. 12041-5, 2017.
  • [16] N. Madankumar, K. Pitchumani, “β‐Cyclodextrin monosulphonic acid promoted multicomponent synthesis of 1,8‐dioxodecahydroacridines in water,” Chemistry Select, vol. 3, no. 39, p.10886-91, 2018.
  • [17] S. Abdolmohammadi, S. Dahi-Azar, M. Mohammadnejad, A. Hosseinian, “A simple and efficient synthesis of 4-arylacridinediones and 6-aryldiindeno[1,2-b:2,-e]pyridinediones using CuI nanoparticles as catalyst under solvent-free conditions,” Combinatorial Chemistry & High Throughput Screening, vol. 20, no. 9, p.773-80, 2017.
  • [18] M. Patil, S. Karhale, A. Kudale, A. Kumbhar, S. More, V. Helavi, “Green protocol for the synthesis of 1,8-dioxo-decahydroacridines by Hantzsch condensation using citric acid as organocatalyst,” Current Science, vol. 116, no. 6, p. 936, 2019.
  • [19] M. Faisal, S. Shahid, S. A. Ghumro, A. Saeed, F. A. Larik, Z. Shaheen, et al., “DABCO–PEG ionic liquid-based synthesis of acridine analogous and its inhibitory activity on alkaline phosphatase,” Synthetic Communications, vol. 48. no. 4, p. 462-72, 2018.
  • [20] M. Kangani, N. Hazeri, M-T. Maghsoodlou, “Cobalt(II)nitrate hexahydrate, as an efficient catalyst for the synthesis of highly substituted piperidines and 1,8-dioxodecahydroacridine derivatives,” Indian Journal of Chemistry-Section B Organic and Medicinal Chemistry, vol. 56, no. 6, p. 663-669, 2017.
  • [21] R. Kardooni, A. R. Kiasat, H. Motamedi, “Designing of a novel dual-function silica-iron oxide hybrid based nanocomposite, Fe3O4@SiO2PEG/NH2, and its application as an eco-catalyst for the solvent-free synthesis of polyhydroacridines and polyhydroquinolines,” Journal of the Taiwan Institute of Chemical Engineer, vol. 81, p. 373-82, 2017.
  • [22] Z. Zarei, B. Akhlaghinia, “Zn II doped and immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-SMTU-ZnII): a novel, green and magnetically recyclable bifunctional nanocatalyst for the one-pot multi-component synthesis of acridinediones under solvent-free conditions,” New Journal of Chemistry, vol. 41, no. 24, p.15485-500, 2017.
  • [23] S. Karhale, M. Patil, G. Rashinkar, V. Helavi, “Green and cost effective protocol for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines by using sawdust sulphonic acid,” Research on Chemical Intermediates, vol. 43, no. 12, p. 7073-86, 2017.
  • [24] G. Shirole, S. Bhalekar, S. Shelke, “N-Butylpyridinium heptachlorodialuminate: A convenient catalyst for the synthesis of acridine 1,8-diones derivatives by microwave assisted Hantzsch reaction. p.1430-5, 2018.
  • [25] A. Djemoui, M. R. Ouahrani, A. Naouri, L. Souli, S-E Rahmani, L. M. Boualem, “Eco-friendly and highly efficient one-pot synthesis of symmetrical and unsymmetrical 1,4-dihydropyridine derivatives using triethylamine as catalyst in ethanol medium,” Heterocyclic Letters, vol. 8, no. 2, p. 455-67, 2018.
  • [26] P. N. Chavan, D. N. Pansare, R. N. Shelke, “Eco‐friendly, ultrasound‐assisted, and facile synthesis of one‐pot multicomponent reaction of acridine‐1,8(2H,5H)‐diones in an aqueous solvent,” Journal of the Chinese Chemical Society, vol. 66, no. 8, p. 822-8, 2019.
  • [27] M. Nikpassand, L. Zare, M. Saberi, “Ultrasound-assisted L-proline catalyzed synthesis of novel derivatives of azo-linked dihydropyridines,” Monatshefte für Chemie-Chemical Monthly, vol. 143, no. 2, p. 289-93, 2012.
  • [28] A. Shockravi, M. Kamali, N. Sharifi, M. Nategholeslam, S. P. Moghanlo, “One-pot and solvent-free synthesis of 1,4-dihydropyridines and 3,4-dihydropyrimidine-2-ones using new synthetic recyclable catalyst via Biginelli and Hantzsch reactions,” Synthetic Communications, vol. 43, no. 11, p. 1477-83, 2013.
  • [29] M. Dashteh, S. Baghery, M. A. Zolfigol, Y. Bayat, A. Asgari, “1,10‐Phenanthrolin‐1‐ium trinitromethanide (1,10‐PHTNM) as a nano molten salt catalyst with Y‐aromatic counter ion: Applications for synthesis of organic compounds,” Chemistry Select, vol. 4, no. 1, p. 337-46, 2019.
  • [30] P. Das, A. Dutta, A. Bhaumik, C. Mukhopadhyay, “Heterogeneous ditopic ZnFe2O4 catalyzed synthesis of 4 H-pyrans: further conversion to 1,4-DHPs and report of functional group interconversion from amide to ester,” Green Chemistry, vol. 16, no. 3, p. 1426-1435, 2014.
  • [31] K. Venkatapathy, C. J. Magesh, G. Lavanya, P. T. Perumal, S. Prema, “Design, synthesis, molecular docking, and spectral studies of new class of carbazolyl polyhydroquinoline derivatives as promising antibacterial agents with noncytotoxicity towards human mononuclear cells from peripheral blood,” Journal of Heterocyclic Chemistry, vol. 57, no. 4, p. 1936-55, 2020.
  • [32] Z. Alirezvani, M. G. Dekamin, E. Valiey, “New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently functionalized MCM-41: an efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives,” ACS omega, vol. 4, no. 24, p. 20618-33, 2019.
  • [33] A. Saini, S. Kumar, J. S. Sandhu, “Hantzsch reaction: Recent advances in Hantzsch 1,4-dihydropyridines,” 2008.
  • [34] Y. Zhang, Z. Zhou, “Solvent-free one-pot synthesis of 1,8-dioxo-decahydroacridines by a [Et3NH][HSO4] catalyzed multicomponent reaction,” Polycyclic Aromatic Compounds, vol. 38, no. 4, p. 329-37, 2018.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Duygu Bayramoğlu 0000-0002-0613-3539

Mehtap Özgür Bu kişi benim 0000-0002-6237-8522

Yayımlanma Tarihi 31 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Bayramoğlu, D., & Özgür, M. (2021). Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted heteroaryl) acridinedione Derivatives. Duzce University Journal of Science and Technology, 9(5), 1610-1620. https://doi.org/10.29130/dubited.926881
AMA Bayramoğlu D, Özgür M. Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted heteroaryl) acridinedione Derivatives. DÜBİTED. Ekim 2021;9(5):1610-1620. doi:10.29130/dubited.926881
Chicago Bayramoğlu, Duygu, ve Mehtap Özgür. “Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted Heteroaryl) Acridinedione Derivatives”. Duzce University Journal of Science and Technology 9, sy. 5 (Ekim 2021): 1610-20. https://doi.org/10.29130/dubited.926881.
EndNote Bayramoğlu D, Özgür M (01 Ekim 2021) Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted heteroaryl) acridinedione Derivatives. Duzce University Journal of Science and Technology 9 5 1610–1620.
IEEE D. Bayramoğlu ve M. Özgür, “Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted heteroaryl) acridinedione Derivatives”, DÜBİTED, c. 9, sy. 5, ss. 1610–1620, 2021, doi: 10.29130/dubited.926881.
ISNAD Bayramoğlu, Duygu - Özgür, Mehtap. “Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted Heteroaryl) Acridinedione Derivatives”. Duzce University Journal of Science and Technology 9/5 (Ekim 2021), 1610-1620. https://doi.org/10.29130/dubited.926881.
JAMA Bayramoğlu D, Özgür M. Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted heteroaryl) acridinedione Derivatives. DÜBİTED. 2021;9:1610–1620.
MLA Bayramoğlu, Duygu ve Mehtap Özgür. “Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted Heteroaryl) Acridinedione Derivatives”. Duzce University Journal of Science and Technology, c. 9, sy. 5, 2021, ss. 1610-2, doi:10.29130/dubited.926881.
Vancouver Bayramoğlu D, Özgür M. Ultrasound-Assisted One‐Pot Synthesis of 9-(Substituted heteroaryl) acridinedione Derivatives. DÜBİTED. 2021;9(5):1610-2.