Araştırma Makalesi
BibTex RIS Kaynak Göster

Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu ve Kondenzasyon Reaksiyonu ile Sentezi ve Karakterizasyonu

Yıl 2021, , 1860 - 1874, 31.10.2021
https://doi.org/10.29130/dubited.927837

Öz

Bu çalışmada, NPLina1-g-PCL-g-PSt üç bloklu graft kopolimerler Atom Transfer Radikal Polimerizasyonu (ATRP) ve kondenzasyon reaksiyonu kullanılarak bir basamakta tek kap (one-pot) yöntemiyle sentezlendi. Polimerik linoleik asit dietanolaminle reaksiyona sokularak hidroksillenmiş linoleik asit polimerleri (NPLina1, NPLina2 ve NPLina3) elde edilmiştir. ε-Kaprolakton'nun (ε-CL) kalay (II) 2-etilheksanoat katalizörü varlığında 110 °C'de halka açılma polimerizasyonuyla poli(ε-kaprolakton) (PCL) sentezlenip, ardından 2-bromopropiyonil bromür ile esterleşmesi sonucu bromlanmış poli(ε-kaprolakton) (PCL-Br) makro başlatıcısı hazırlandı. Tek kap yöntemiyle, stiren (St) monomerinin PCL-Br makro başlatıcısıyla CuCl/PMDETA sistemi varlığında [I]:[CuCl]:[PMDETA] = 1:1:3 mol oranları kullanılarak, 110 °C’de toluen içinde ATRP'si ile NPLina1’nın kondenzasyon reaksiyonu aynı anda gerçekleştirildi. Böylece, kontrollü molekül ağırlıklarına ve orta derecede dar polidispersitelere sahip graft kopolimerler elde edildi. Tek basamakta gerçekleşen polimerizasyon üzerine monomer konsantrasyonu, başlatıcı konsantrasyonu ve polimerizasyon süresi gibi temel parametreler incelendi. Elde edilen polimerler, proton nükleer manyetik rezonans (1H NMR), fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ve jel geçirgenlik kromatografısi (GPC) teknikleri kullanılarak karakterize edildi.

Destekleyen Kurum

Düzce Üniversitesi

Proje Numarası

2019.07.06.1021

Teşekkür

Bu çalışma Düzce Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir.

Kaynakça

  • [1] U. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, and H. J. Schäfer, “Oils and fats as renewable raw materials in chemistry,” Angew. Chemie - Int. Ed., vol. 50, no. 17, pp. 3854–3871, 2011,
  • [2] J. O. Metzger, “Fats and oils as renewable feedstock for chemistry,” Eur. J. Lipid Sci. Technol., vol. 111, no. 9, pp. 865–876, 2009.
  • [3] S. Miao, P. Wang, Z. Su, and S. Zhang, “Vegetable-oil-based polymers as future polymeric biomaterials,” Acta Biomater., vol. 10, no. 4, pp. 1692–1704, 2014.
  • [4] V. Mittal, “Polymers from Renewable Resources,” Renew. Polym. Synth. Process. Technol., pp. 1–22, 2011.
  • [5] M. Galià, L. M. de Espinosa, J. C. Ronda, G. Lligadas, and V. Cádiz, “Vegetable oil-based thermosetting polymers,” Eur. J. Lipid Sci. Technol., vol. 112, no. 1, pp. 87–96, 2010.
  • [6] Y. Xia and R. C. Larock, “Vegetable oil-based polymeric materials: Synthesis, properties, and applications,” Green Chem., vol. 12, no. 11, pp. 1893–1909, 2010.
  • [7] P. H. Henna and R. C. Larock, “Rubbery thermosets by ring-opening metathesis polymerization of a functionalized castor oil and cyclooctene,” Macromol. Mater. Eng., vol. 292, no. 12, pp. 1201–1209, 2007.
  • [8] Y. Xia, Y. Lu, and R. C. Larock, “Ring-opening metathesis polymerization (ROMP) of norbornenyl-functionalized fatty alcohols,” Polymer, vol. 51, no. 1, pp. 53–61, 2010.
  • [9] A. Köckritz and A. Martin, “Oxidation of unsaturated fatty acid derivatives and vegetable oils,” Eur. J. Lipid Sci. Technol., vol. 110, no. 9, pp. 812–824, 2008.
  • [10] F. Seniha Güner, Y. Yaǧci, and A. Tuncer Erciyes, “Polymers from triglyceride oils,” Prog. Polym. Sci., vol. 31, no. 7, pp. 633–670, 2006.
  • [11] G. Lligadas, J. C. Ronda, M. Galià, and V. Cádiz, “Renewable polymeric materials from vegetable oils: A perspective,” Mater. Today, vol. 16, no. 9, pp. 337–343, 2013.
  • [12] M. A. R. Meier, J. O. Metzger, and U. S. Schubert, “Plant oil renewable resources as green alternatives in polymer science,” Chem. Soc. Rev., vol. 36, no. 11, pp. 1788–1802, 2007.
  • [13] F. Li and R. C. Larock, “Synthesis, structure and properties of new tung oil-Styrene- Divinylbenzene copolymers prepared by thermal polymerization,” Biomacromolecules, vol. 4, no. 4, pp. 1018–1025, 2003.
  • [14] S. N. Khot, J. J. Lascala, E. Can, S. S. Morye, G. I. Williams, G. R. Palmese, S. H. Küsefoğlu, and R. P. Wool, “Development and application of triglyceride-based polymers and composites,” J. Appl. Polym. Sci., vol. 82, no. 3, pp. 703–723, 2001.
  • [15] A. Alli and B. Hazer, “Synthesis and characterization of poly(N-isopropyl acryl amide)-g-poly(linoleic acid)/poly(linolenic acid) graft copolymers,” JAOCS, J. Am. Oil Chem. Soc., vol. 88, no. 2, pp. 255–263, 2011.
  • [16] S. Allı, P. Geçit, M. Gürel ve A. Allı, “Halka Açılma Polimerizasyonuyla Poli(linoleik asit)-g-Poli(ε-kaprolakton) ve Poli(linolenik asit)-g-Poli(ε-kaprolakton) Graft Kopolimerlerin Sentezi ve Karakterizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 6, s. 4, ss. 1010–1027, 2018.
  • [17] S. Allı, P. Geçit, M. Gürel ve A. Allı, “One-pot Polimerleşme Yöntemiyle Poli(linoleik asit)-g-Poli(Nisopropilakrilamit)-g-Poli(D,L-laktid) Graft Kopolimerlerin Sentezi ve Karakterizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 6, s. 4, ss. 1321–1334, 2018.
  • [18] B. Çakmakli, B. Hazer, I. Ö. Tekin, and F. B. Cömert, “Synthesis and characterization of polymeric soybean oil-g-methyl methacrylate (and n-butyl methacrylate) graft copolymers: Biocompatibility and bacterial adhesion,” Biomacromolecules, vol. 6, no. 3, pp. 1750–1758, 2005.
  • [19] A. Allı, Y. Arı, and M. Gökçen, “Novel Poly(linolenic acid) Graft Copolymers: Synthesis, Characterization and Electrical Properties,” J. Am. Oil Chem. Soc., vol. 93, no. 7, pp. 895–904, 2016.
  • [20] A. Allı, S. Alli, C. R. Becer, and B. Hazer, “One-pot synthesis of poly(linoleic acid)-g-poly(styrene)-g-poly(ε-caprolactone) graft copolymers,” J. Am. Oil Chem. Soc., vol. 91, no. 5, pp. 849–858, 2014.
  • [21] A. Alli, S. Alli, C. R. Becer, and B. Hazer, “Nitroxide-mediated copolymerization of styrene and pentafluorostyrene initiated by polymeric linoleic acid,” Eur. J. Lipid Sci. Technol., vol. 118, no. 2, pp. 279–287, 2016.
  • [22] M. Acar, S. Çoban, and B. Hazer, “Novel water soluble Soya oil polymer from oxidized Soya oil polymer and diethanol amine,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 50, no. 3, pp. 287–296, 2013.
  • [23] A. Alli, T. Şanal, and B. Hazer, “Redox polymerization of N-isopropylacrylamide by using hydroxylated soya oil polymer,” Turkish J. Chem., vol. 39, no. 2, pp. 382–394, 2015.
  • [24] M. Vert, “Aliphatic polyesters: Great degradable polymers that cannot do everything,” Biomacromolecules, vol. 6, no. 2, pp. 538–546, 2005.
  • [25] J. Muller, C. González-Martínez, and A. Chiralt, “Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging,” Materials, vol. 10, no. 8, p. 952, 2017.
  • [26] R. Turco, R. O. Toro , R. Tesser, S. Mallardo, S. C. Bigliardi, A. C. Boix, M. Malinconico, M. Rippa, M. D. Serio, and G. Santagata, “Poly (Lactic Acid)/Thermoplastic Starch Films: Effect of Cardoon Seed Epoxidized Oil on Their Chemicophysical, Mechanical, and Barrier Properties,” Coatings, vol. 9, no. 9, p. 574, 2019.
  • [27] L. Yu, K. Dean, and L. Li, “Polymer blends and composites from renewable resources,” Progress in Polymer Science, vol. 31, no. 6, pp. 576–602, 2006.
  • [28] C. Z. Qizhi Chen and and G. A. Thouas, “Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites,” Prog. Biomater., pp. 1–23, 2012.
  • [29] C. W. Wang, L. Chao, X. W. Zhu, Z. Y. Yang, H. F. Sun, D. L. Kong and J. Yang, “Synthesis of well-defined star-shaped poly(ε-caprolactone)/poly(ethylbene glycol) amphiphilic conetworks by combination of ring opening polymerization and ‘click’ chemistry,” J. Polym. Sci. Part A Polym. Chem., vol. 54, no. 3, pp. 407–417, 2016.
  • [30] X. He, L. Liang, M. Xie, Y. Zhang, S. Lin, and D. Yan, “Synthesis of novel linear PEO-b-PS-b-PCL triblock copolymers by the combination of ATRP, ROP, and a click reaction,” Macromol. Chem. Phys., vol. 208, no. 16, pp. 1797–1802, 2007.
  • [31] T. Öztürk and E. Meyvacı, “Synthesis and characterization poly(ϵ-caprolactone-b-ethylene glycol-b-ϵ-caprolactone) ABA type block copolymers via ‘Click’ chemistry and ring-opening polymerization,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 54, no. 9, pp. 575–581, 2017.
  • [32] C. F. Huang et al., “Synthesis of well-defined PCL-b-PnBA-b-PMMA ABC-type triblock copolymers: toward the construction of nanostructures in epoxy thermosets,” Polym. Chem., vol. 9, no. 48, pp. 5644–5654, 2018.
  • [33] E. Ö. Hasanoğlu, N. K. Yetim, D. Nartop, and N. Sarı, “Ensuring traceability of organophosphate pesticides (OPs) through enzyme immobilized spheres,”Journal of the Iranian Chemical Society, vol. 18, pp.1749–1759, 2021.
  • [34] D. Nartop, E. Ö. Hasanoğlu, N. K. Yetim, and N. Sarı, “Qualitative enzymatic detection of organophosphate and carbamate insecticides,” Journal of Envıronmental Scıence and Health, Part B, vol. 55, no. 11, pp. 951–958, 2020.
  • [35] D. Nartop, N. K. Yetim, E. Ö. Hasanoğlu, and N. Sarı, “Enzyme immobilization on polymeric microspheres containing Schiff base for detection of organophosphate and carbamate insecticides,” Journal of Molecular Structure, vol. 1200, no.1, pp. 127039, 2020.
  • 36] N. Ajioka, Y. Suzuki, A. Yokoyama, and T. Yokozawa, “Synthesis of well-defined polystyrene-b-aromatic polyether using an orthogonal initiator for atom transfer radical polymerization and chain-growth condensation polymerization,” Macromolecules, vol. 40, no. 15, pp. 5294–5300, 2007.
  • [37] C. F. Huang, Y. Akihiro, and Y. Tsutomu, “Synthesis of polybenzamide-b-polystyrene block copolymer via combination of chain-growth condensation polymerization and atom transfer radical Polymerization,” J. Polym. Sci. Part A Polym. Chem., vol. 48, no. 13, pp. 2948–2954, 2010.
  • [38] L. Mespouille, O. Coulembier, D. Paneva, P. Degée, I. Rashkov, and P. Dubois, “Synthesis of adaptative and amphiphilic polymer model conetworks by versatile combination of ATRP, ROP, and ‘click chemistry,’” J. Polym. Sci. Part A Polym. Chem., vol. 46, no. 15, pp. 4997–5013, 2008.
  • [39] H. Gao and K. Matyjaszewski, “Synthesis of star polymers by a combination of ATRP and the ‘click’ coupling method,” Macromolecules, vol. 39, no. 15, pp. 4960–4965, 2006.
  • [40] J. Chen, H. Zhang, J. Chen, X. Wang, and X. Wang, “Synthesis of star-shaped poly(ε-caprolactone)-b-poly(styrene) block copolymer by combining ring-opening polymerization and atom transfer radical polymerization,” J. Macromol. Sc -Pure Appl. Chem., vol. 42 A, no. 9, pp. 1247–1257, 2005.
  • [41] J. S. Wang and K. Matyjaszewski, “Controlled/‘Living’ Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process,” Macromolecules, vol. 28, no. 23, pp. 7901–7910, 1995.
  • [42] T. Öztürk, M. Yavuz, M. Göktaş, and B. Hazer, “One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization,” Polym. Bull., vol. 73, no. 6, pp. 1497–1513, 2016.
  • [43] T. Öztürk, M. N. Atalar, M. Göktaş, and B. Hazer, “One-step synthesis of block-graft copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization using a novel macroinitiator,” J. Polym. Sci. Part A Polym. Chem., vol. 51, no. 12, pp. 2651–2659, 2013.

Synthesis and Characterization of Graft Copolymers Containing Polymeric Linoleic Acid by Atom Transfer Radical Polymerization and Condensation Reaction

Yıl 2021, , 1860 - 1874, 31.10.2021
https://doi.org/10.29130/dubited.927837

Öz

In this study, NPLina1-g-PCL-g-PSt tri-block graft copolymers were synthesized by one-pot method using Atom Transfer Radical Polymerization (ATRP) and condensation reaction in one step. Hydroxylated polymers of linoleic acid (NPLina1, NPLina2 ve NPLina3) were obtained by reacting polymeric linoleic acid synthesized with amine diethanolamine. Bromine ended poly(ε-caprolactone) (PCL-Br) as macroinitiator was prepared via ROP of ε-caprolactone (ε-CL) in the existence of tin(II) 2 ethylhexanoate at 110 °C followed by esterification with 2-bromopropionyl bromide. With the one-pot method, the simultaneously ATRP of Styrene (St) and as condensation polymerization of NPLina1 was performed out by using the PCL-Br macroinitiator and CuCl/PMDETA system in the existence in toluene at 110 °C with [I]:[CuCl]:[PMDETA]=1:1:3. Thus, the graft copolymers with controlled molecular weights and moderately narrow polydispersities were obtained. The impacts of the main parameters were investigated on one-step polymerization such as monomer concentration, initiator concentration, and polymerization time. Polymers obtained were characterized using proton nuclear magnetic resonance (1H NMR), fourier-transform infrared spectroscopy (FTIR), and gel permeation chromatography, (GPC) techniques.

Proje Numarası

2019.07.06.1021

Kaynakça

  • [1] U. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, and H. J. Schäfer, “Oils and fats as renewable raw materials in chemistry,” Angew. Chemie - Int. Ed., vol. 50, no. 17, pp. 3854–3871, 2011,
  • [2] J. O. Metzger, “Fats and oils as renewable feedstock for chemistry,” Eur. J. Lipid Sci. Technol., vol. 111, no. 9, pp. 865–876, 2009.
  • [3] S. Miao, P. Wang, Z. Su, and S. Zhang, “Vegetable-oil-based polymers as future polymeric biomaterials,” Acta Biomater., vol. 10, no. 4, pp. 1692–1704, 2014.
  • [4] V. Mittal, “Polymers from Renewable Resources,” Renew. Polym. Synth. Process. Technol., pp. 1–22, 2011.
  • [5] M. Galià, L. M. de Espinosa, J. C. Ronda, G. Lligadas, and V. Cádiz, “Vegetable oil-based thermosetting polymers,” Eur. J. Lipid Sci. Technol., vol. 112, no. 1, pp. 87–96, 2010.
  • [6] Y. Xia and R. C. Larock, “Vegetable oil-based polymeric materials: Synthesis, properties, and applications,” Green Chem., vol. 12, no. 11, pp. 1893–1909, 2010.
  • [7] P. H. Henna and R. C. Larock, “Rubbery thermosets by ring-opening metathesis polymerization of a functionalized castor oil and cyclooctene,” Macromol. Mater. Eng., vol. 292, no. 12, pp. 1201–1209, 2007.
  • [8] Y. Xia, Y. Lu, and R. C. Larock, “Ring-opening metathesis polymerization (ROMP) of norbornenyl-functionalized fatty alcohols,” Polymer, vol. 51, no. 1, pp. 53–61, 2010.
  • [9] A. Köckritz and A. Martin, “Oxidation of unsaturated fatty acid derivatives and vegetable oils,” Eur. J. Lipid Sci. Technol., vol. 110, no. 9, pp. 812–824, 2008.
  • [10] F. Seniha Güner, Y. Yaǧci, and A. Tuncer Erciyes, “Polymers from triglyceride oils,” Prog. Polym. Sci., vol. 31, no. 7, pp. 633–670, 2006.
  • [11] G. Lligadas, J. C. Ronda, M. Galià, and V. Cádiz, “Renewable polymeric materials from vegetable oils: A perspective,” Mater. Today, vol. 16, no. 9, pp. 337–343, 2013.
  • [12] M. A. R. Meier, J. O. Metzger, and U. S. Schubert, “Plant oil renewable resources as green alternatives in polymer science,” Chem. Soc. Rev., vol. 36, no. 11, pp. 1788–1802, 2007.
  • [13] F. Li and R. C. Larock, “Synthesis, structure and properties of new tung oil-Styrene- Divinylbenzene copolymers prepared by thermal polymerization,” Biomacromolecules, vol. 4, no. 4, pp. 1018–1025, 2003.
  • [14] S. N. Khot, J. J. Lascala, E. Can, S. S. Morye, G. I. Williams, G. R. Palmese, S. H. Küsefoğlu, and R. P. Wool, “Development and application of triglyceride-based polymers and composites,” J. Appl. Polym. Sci., vol. 82, no. 3, pp. 703–723, 2001.
  • [15] A. Alli and B. Hazer, “Synthesis and characterization of poly(N-isopropyl acryl amide)-g-poly(linoleic acid)/poly(linolenic acid) graft copolymers,” JAOCS, J. Am. Oil Chem. Soc., vol. 88, no. 2, pp. 255–263, 2011.
  • [16] S. Allı, P. Geçit, M. Gürel ve A. Allı, “Halka Açılma Polimerizasyonuyla Poli(linoleik asit)-g-Poli(ε-kaprolakton) ve Poli(linolenik asit)-g-Poli(ε-kaprolakton) Graft Kopolimerlerin Sentezi ve Karakterizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 6, s. 4, ss. 1010–1027, 2018.
  • [17] S. Allı, P. Geçit, M. Gürel ve A. Allı, “One-pot Polimerleşme Yöntemiyle Poli(linoleik asit)-g-Poli(Nisopropilakrilamit)-g-Poli(D,L-laktid) Graft Kopolimerlerin Sentezi ve Karakterizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 6, s. 4, ss. 1321–1334, 2018.
  • [18] B. Çakmakli, B. Hazer, I. Ö. Tekin, and F. B. Cömert, “Synthesis and characterization of polymeric soybean oil-g-methyl methacrylate (and n-butyl methacrylate) graft copolymers: Biocompatibility and bacterial adhesion,” Biomacromolecules, vol. 6, no. 3, pp. 1750–1758, 2005.
  • [19] A. Allı, Y. Arı, and M. Gökçen, “Novel Poly(linolenic acid) Graft Copolymers: Synthesis, Characterization and Electrical Properties,” J. Am. Oil Chem. Soc., vol. 93, no. 7, pp. 895–904, 2016.
  • [20] A. Allı, S. Alli, C. R. Becer, and B. Hazer, “One-pot synthesis of poly(linoleic acid)-g-poly(styrene)-g-poly(ε-caprolactone) graft copolymers,” J. Am. Oil Chem. Soc., vol. 91, no. 5, pp. 849–858, 2014.
  • [21] A. Alli, S. Alli, C. R. Becer, and B. Hazer, “Nitroxide-mediated copolymerization of styrene and pentafluorostyrene initiated by polymeric linoleic acid,” Eur. J. Lipid Sci. Technol., vol. 118, no. 2, pp. 279–287, 2016.
  • [22] M. Acar, S. Çoban, and B. Hazer, “Novel water soluble Soya oil polymer from oxidized Soya oil polymer and diethanol amine,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 50, no. 3, pp. 287–296, 2013.
  • [23] A. Alli, T. Şanal, and B. Hazer, “Redox polymerization of N-isopropylacrylamide by using hydroxylated soya oil polymer,” Turkish J. Chem., vol. 39, no. 2, pp. 382–394, 2015.
  • [24] M. Vert, “Aliphatic polyesters: Great degradable polymers that cannot do everything,” Biomacromolecules, vol. 6, no. 2, pp. 538–546, 2005.
  • [25] J. Muller, C. González-Martínez, and A. Chiralt, “Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging,” Materials, vol. 10, no. 8, p. 952, 2017.
  • [26] R. Turco, R. O. Toro , R. Tesser, S. Mallardo, S. C. Bigliardi, A. C. Boix, M. Malinconico, M. Rippa, M. D. Serio, and G. Santagata, “Poly (Lactic Acid)/Thermoplastic Starch Films: Effect of Cardoon Seed Epoxidized Oil on Their Chemicophysical, Mechanical, and Barrier Properties,” Coatings, vol. 9, no. 9, p. 574, 2019.
  • [27] L. Yu, K. Dean, and L. Li, “Polymer blends and composites from renewable resources,” Progress in Polymer Science, vol. 31, no. 6, pp. 576–602, 2006.
  • [28] C. Z. Qizhi Chen and and G. A. Thouas, “Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites,” Prog. Biomater., pp. 1–23, 2012.
  • [29] C. W. Wang, L. Chao, X. W. Zhu, Z. Y. Yang, H. F. Sun, D. L. Kong and J. Yang, “Synthesis of well-defined star-shaped poly(ε-caprolactone)/poly(ethylbene glycol) amphiphilic conetworks by combination of ring opening polymerization and ‘click’ chemistry,” J. Polym. Sci. Part A Polym. Chem., vol. 54, no. 3, pp. 407–417, 2016.
  • [30] X. He, L. Liang, M. Xie, Y. Zhang, S. Lin, and D. Yan, “Synthesis of novel linear PEO-b-PS-b-PCL triblock copolymers by the combination of ATRP, ROP, and a click reaction,” Macromol. Chem. Phys., vol. 208, no. 16, pp. 1797–1802, 2007.
  • [31] T. Öztürk and E. Meyvacı, “Synthesis and characterization poly(ϵ-caprolactone-b-ethylene glycol-b-ϵ-caprolactone) ABA type block copolymers via ‘Click’ chemistry and ring-opening polymerization,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 54, no. 9, pp. 575–581, 2017.
  • [32] C. F. Huang et al., “Synthesis of well-defined PCL-b-PnBA-b-PMMA ABC-type triblock copolymers: toward the construction of nanostructures in epoxy thermosets,” Polym. Chem., vol. 9, no. 48, pp. 5644–5654, 2018.
  • [33] E. Ö. Hasanoğlu, N. K. Yetim, D. Nartop, and N. Sarı, “Ensuring traceability of organophosphate pesticides (OPs) through enzyme immobilized spheres,”Journal of the Iranian Chemical Society, vol. 18, pp.1749–1759, 2021.
  • [34] D. Nartop, E. Ö. Hasanoğlu, N. K. Yetim, and N. Sarı, “Qualitative enzymatic detection of organophosphate and carbamate insecticides,” Journal of Envıronmental Scıence and Health, Part B, vol. 55, no. 11, pp. 951–958, 2020.
  • [35] D. Nartop, N. K. Yetim, E. Ö. Hasanoğlu, and N. Sarı, “Enzyme immobilization on polymeric microspheres containing Schiff base for detection of organophosphate and carbamate insecticides,” Journal of Molecular Structure, vol. 1200, no.1, pp. 127039, 2020.
  • 36] N. Ajioka, Y. Suzuki, A. Yokoyama, and T. Yokozawa, “Synthesis of well-defined polystyrene-b-aromatic polyether using an orthogonal initiator for atom transfer radical polymerization and chain-growth condensation polymerization,” Macromolecules, vol. 40, no. 15, pp. 5294–5300, 2007.
  • [37] C. F. Huang, Y. Akihiro, and Y. Tsutomu, “Synthesis of polybenzamide-b-polystyrene block copolymer via combination of chain-growth condensation polymerization and atom transfer radical Polymerization,” J. Polym. Sci. Part A Polym. Chem., vol. 48, no. 13, pp. 2948–2954, 2010.
  • [38] L. Mespouille, O. Coulembier, D. Paneva, P. Degée, I. Rashkov, and P. Dubois, “Synthesis of adaptative and amphiphilic polymer model conetworks by versatile combination of ATRP, ROP, and ‘click chemistry,’” J. Polym. Sci. Part A Polym. Chem., vol. 46, no. 15, pp. 4997–5013, 2008.
  • [39] H. Gao and K. Matyjaszewski, “Synthesis of star polymers by a combination of ATRP and the ‘click’ coupling method,” Macromolecules, vol. 39, no. 15, pp. 4960–4965, 2006.
  • [40] J. Chen, H. Zhang, J. Chen, X. Wang, and X. Wang, “Synthesis of star-shaped poly(ε-caprolactone)-b-poly(styrene) block copolymer by combining ring-opening polymerization and atom transfer radical polymerization,” J. Macromol. Sc -Pure Appl. Chem., vol. 42 A, no. 9, pp. 1247–1257, 2005.
  • [41] J. S. Wang and K. Matyjaszewski, “Controlled/‘Living’ Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process,” Macromolecules, vol. 28, no. 23, pp. 7901–7910, 1995.
  • [42] T. Öztürk, M. Yavuz, M. Göktaş, and B. Hazer, “One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization,” Polym. Bull., vol. 73, no. 6, pp. 1497–1513, 2016.
  • [43] T. Öztürk, M. N. Atalar, M. Göktaş, and B. Hazer, “One-step synthesis of block-graft copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization using a novel macroinitiator,” J. Polym. Sci. Part A Polym. Chem., vol. 51, no. 12, pp. 2651–2659, 2013.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sema Allı 0000-0002-3404-8809

Proje Numarası 2019.07.06.1021
Yayımlanma Tarihi 31 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Allı, S. (2021). Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu ve Kondenzasyon Reaksiyonu ile Sentezi ve Karakterizasyonu. Duzce University Journal of Science and Technology, 9(5), 1860-1874. https://doi.org/10.29130/dubited.927837
AMA Allı S. Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu ve Kondenzasyon Reaksiyonu ile Sentezi ve Karakterizasyonu. DÜBİTED. Ekim 2021;9(5):1860-1874. doi:10.29130/dubited.927837
Chicago Allı, Sema. “Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu Ve Kondenzasyon Reaksiyonu Ile Sentezi Ve Karakterizasyonu”. Duzce University Journal of Science and Technology 9, sy. 5 (Ekim 2021): 1860-74. https://doi.org/10.29130/dubited.927837.
EndNote Allı S (01 Ekim 2021) Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu ve Kondenzasyon Reaksiyonu ile Sentezi ve Karakterizasyonu. Duzce University Journal of Science and Technology 9 5 1860–1874.
IEEE S. Allı, “Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu ve Kondenzasyon Reaksiyonu ile Sentezi ve Karakterizasyonu”, DÜBİTED, c. 9, sy. 5, ss. 1860–1874, 2021, doi: 10.29130/dubited.927837.
ISNAD Allı, Sema. “Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu Ve Kondenzasyon Reaksiyonu Ile Sentezi Ve Karakterizasyonu”. Duzce University Journal of Science and Technology 9/5 (Ekim 2021), 1860-1874. https://doi.org/10.29130/dubited.927837.
JAMA Allı S. Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu ve Kondenzasyon Reaksiyonu ile Sentezi ve Karakterizasyonu. DÜBİTED. 2021;9:1860–1874.
MLA Allı, Sema. “Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu Ve Kondenzasyon Reaksiyonu Ile Sentezi Ve Karakterizasyonu”. Duzce University Journal of Science and Technology, c. 9, sy. 5, 2021, ss. 1860-74, doi:10.29130/dubited.927837.
Vancouver Allı S. Polimerik Linoleik Asit İçeren Graft Kopolimerlerin Atom Transfer Radikal Polimerizasyonu ve Kondenzasyon Reaksiyonu ile Sentezi ve Karakterizasyonu. DÜBİTED. 2021;9(5):1860-74.