Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Zn and Nd Elements on Microstructure, Mechanical and Corrosion Properties of Biodegradable Mg-Ag Alloys

Yıl 2022, , 1372 - 1382, 31.07.2022
https://doi.org/10.29130/dubited.996415

Öz

In this study, casting, microstructure, mechanical and in vitro corrosion properties of 0.5% (Zn and Nd) element added Mg-3%Ag cast alloys were investigated. According to the results of the experiment, it was observed that the grains got refined with the effect of Zn element added to the alloys and thus some mechanical properties of the alloys increased. The highest hardness value was observed in the alloy (Mg-3Ag-0.5Nd) created by the addition of Nd element. After the corrosion tests, differences were determined depending on the alloying elements. It has been determined that the secondary phases seen in the structure of the alloys have an effect on the mechanical and corrosion properties of these alloys. According to all these results, it was concluded that Mg-Ag alloys are required and open for development in the field of biomaterials.

Proje Numarası

119M645

Kaynakça

  • [1] M. Vogel, “Mikrostruktur Und Kriechverhalten Von Magnesium-Druckgusslegierungen Im System Mg-Zn-Al-Ca,” Ph.D. Thesis, Universität Stuttgart, 2002.
  • [2] L. Elen, “AZ91 Magnezyum alaşımına farklı oranlarda Bi ve Sb ilavesi ile katılaşma hızının mikroyapı ve mekanik özelliklere etkisi,” Yüksek lisans tezi, Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Karabük, Türkiye, 2012.
  • [3] L. Elen, Y. Türen and E. Koç, “Effects of solidification rate on microstructure and mechanical properties with Sb at Different Ratio of AZ91 Quality Mg Alloy,” Int. J. Eng. Res. Dev., vol. 11, no. 2, pp. 451–463, 2019.
  • [4] L. Elen, B. Cicek, E. Koc, Y. Turen, Y. Sun and H. Ahlatci, “Effects of alloying element and cooling rate on properties of AM60 Mg alloy,” Mater. Res. Express, vol. 6, no. 9, 2019.
  • [5] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials, vol. 27, no. 9, pp. 1728–1734, 2006.
  • [6] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, H. Windhagen, “In vivo corrosion of four magnesium alloys and the associated bone response,” Biomaterials, vol. 26, no. 17, pp. 3557–3563, 2005.
  • [7] G. Song and S. Song, “A Possible Biodegradable Magnesium Implant Material,” Adv. Eng. Mater., vol. 9, no. 4, pp. 298–302, 2007.
  • [8] Y. Zheng, Magnesium alloys as degradable biomaterials. Boca Raton London New York: CRC Press, Taylor & Francis Group, 2015.
  • [9] D. Tie, F. Feyerabend, W. D. Müller, R. Schade, K. Liefeith, K. Kainer, R. Willumeit, “Antibacterial biodegradable Mg-Ag alloys,” Eur. Cell. Mater., vol. 25, pp. 284–298, 2013.
  • [10] K. Nagata, N. Nakashima-Kamimura, T. Mikami, I. Ohsawa, and S. Ohta, “Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice,” Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol., vol. 34, no. 2, pp. 501–508, 2009.
  • [11] P. Maier, N. Lauth, C. L. Mendis, M. Bechly, and N. Hort, “Mechanical and corrosion properties of two precipitation-hardened Mg-Y-Nd-Gd-Dy alloys with small changes in chemical composition,” JOM, vol. 71, no. 4, pp. 1426–1435, 2019.
  • [12] G. Ben-Hamu, D. Eliezer, A. Kaya, Y. G. Na, and K. S. Shin, “Microstructure and corrosion behavior of Mg–Zn–Ag alloys,” Mater. Sci. Eng. A, vol. 435–436, pp. 579–587, 2006.
  • [13] Y. Feng, S. Zhu, L. Wang, L. Chang, Y. Hou, and S. Guan, “Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: Microstructure, mechanical properties, corrosion behavior and antibacterial activities,” Bioact. Mater., vol. 3, no. 3, pp. 225–235, 2018.
  • [14] X. Zhang, Z. Ba, Z. Wang, X. He, C. Shen, and Q. Wang, “Influence of silver addition on microstructure and corrosion behavior of Mg–Nd–Zn–Zr alloys for biomedical application,” Mater. Lett., vol. 100, pp. 188–191, 2013.
  • [15] J. Zhang, B. Jiang, Q. Yang, D. Huang, A. Tang, F. Pan, Q. Han, “Role of second phases on the corrosion resistance of Mg-Nd-Zr alloys,” J. Alloys Compd., vol. 849, pp. 156619, 2020.
  • [16] M., Podosek, A. Rakowska, R. Ciach, " The Influence of Dendrite Segregation on Structure of Mg-Ag Alloys", in Proceedings of the Third International Magnesium Conference, Manchester, England, 1996, pp. 545–555.
  • [17] S. Gorsse, C. R. Hutchinson, B. Chevalier, and J.-F. Nie, “A thermodynamic assessment of the Mg–Nd binary system using random solution and associate models for the liquid phase,” J. Alloys Compd., vol. 392, no. 1, pp. 253–262, 2005.
  • [18] S. Delfino, A. Saccone, and R. Ferro, “Phase relationships in the neodymium-magnesium alloy system,” Metall. Trans. A, vol. 21, no. 8, pp. 2109–2114, 1990.
  • [19] J. Wang, Y.-N. Zhang, P. Hudon, I.-H. Jung, M. Medraj, and P. Chartrand, “Experimental study of the phase equilibria in the Mg–Zn–Ag ternary system at 300°C,” J. Alloys Compd., vol. 639, pp. 593–601, 2015.
  • [20] J. Yan, Y. Sun, F. Xue, S. Xue, and W. Tao, “Microstructure and mechanical properties in cast magnesium–neodymium binary alloys,” Mater. Sci. Eng. A, vol. 476, no. 1, pp. 366–371, 2008.
  • [21] C. Su, D. Li, T. Ying, L. Zhou, L. Li, and X. Zeng, “Effect of Nd content and heat treatment on the thermal conductivity of MgNd alloys,” J. Alloys Compd., vol. 685, pp. 114–121, 2016.
  • [22] G. L. Song and A. Atrens, “Corrosion mechanisms of magnesium alloys,” Adv. Eng. Mater., vol. 1, no. 1, pp. 11–33, 1999.
  • [23] E. Ghali, W. Dietzel, and K.-U. Kainer, “General and localized corrosion of magnesium alloys: A critical review,” J. Mater. Eng. Perform., vol. 13, no. 1, pp. 7–23, 2004.
  • [24] G. Song and A. Atrens, “Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance,” Adv. Eng. Mater., vol. 5, no. 12, pp. 837–858, 2003.
  • [25] F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, “Degradable biomaterials based on magnesium corrosion,” Curr. Opin. Solid State Mater. Sci., vol. 12, no. 5, pp. 63–72, 2008.

Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik ve Korozyon Özelliklerine Zn ve Nd Elementlerinin Etkisi

Yıl 2022, , 1372 - 1382, 31.07.2022
https://doi.org/10.29130/dubited.996415

Öz

Bu çalışmada, %0,5 oranlarında (Zn ve Nd) element ilaveli Mg-%3Ag döküm alaşımlarının, mikroyapı, mekanik, in vitro korozyon özellikleri incelenmiştir. Deney sonuçlarına göre, alaşımlara ilave edilen Zn elementinin etkisiyle (Mg-3Ag-0,5Zn) alaşımda tanelerin inceldiği ve bu sayede alaşımların bazı mekanik özelliklerinin de arttığı gözlenmiştir. Nd elementi ilavesi ile oluşturulan (Mg-3Ag-0,5Nd) alaşımında ise en yüksek sertlik değeri gözlenmiştir. Korozyon testleri sonrasında ise alaşım elementlerine bağlı olarak farklı korozyon değerleri tespit edilmiştir. Alaşımların yapısında tespit edilen ikincil fazların, alaşımların mekanik özelliklerine ve korozyon özelliklerine etki ettiği tespit edilmiştir. Tüm bu sonuçlar neticesinde Mg-Ag alaşımlarının biyomalzeme alanında gelişime açık ve ihtiyaç duyduğu kanısına varılmıştır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

119M645

Teşekkür

Bu çalışma Türkiye Bilimsel Araştırmalar Kurumu (TÜBİTAK) tarafından 1002 no’lu ve 119M645 kodlu Hızlı Destek Projesi ile desteklenmiştir.

Kaynakça

  • [1] M. Vogel, “Mikrostruktur Und Kriechverhalten Von Magnesium-Druckgusslegierungen Im System Mg-Zn-Al-Ca,” Ph.D. Thesis, Universität Stuttgart, 2002.
  • [2] L. Elen, “AZ91 Magnezyum alaşımına farklı oranlarda Bi ve Sb ilavesi ile katılaşma hızının mikroyapı ve mekanik özelliklere etkisi,” Yüksek lisans tezi, Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Karabük, Türkiye, 2012.
  • [3] L. Elen, Y. Türen and E. Koç, “Effects of solidification rate on microstructure and mechanical properties with Sb at Different Ratio of AZ91 Quality Mg Alloy,” Int. J. Eng. Res. Dev., vol. 11, no. 2, pp. 451–463, 2019.
  • [4] L. Elen, B. Cicek, E. Koc, Y. Turen, Y. Sun and H. Ahlatci, “Effects of alloying element and cooling rate on properties of AM60 Mg alloy,” Mater. Res. Express, vol. 6, no. 9, 2019.
  • [5] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials, vol. 27, no. 9, pp. 1728–1734, 2006.
  • [6] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, H. Windhagen, “In vivo corrosion of four magnesium alloys and the associated bone response,” Biomaterials, vol. 26, no. 17, pp. 3557–3563, 2005.
  • [7] G. Song and S. Song, “A Possible Biodegradable Magnesium Implant Material,” Adv. Eng. Mater., vol. 9, no. 4, pp. 298–302, 2007.
  • [8] Y. Zheng, Magnesium alloys as degradable biomaterials. Boca Raton London New York: CRC Press, Taylor & Francis Group, 2015.
  • [9] D. Tie, F. Feyerabend, W. D. Müller, R. Schade, K. Liefeith, K. Kainer, R. Willumeit, “Antibacterial biodegradable Mg-Ag alloys,” Eur. Cell. Mater., vol. 25, pp. 284–298, 2013.
  • [10] K. Nagata, N. Nakashima-Kamimura, T. Mikami, I. Ohsawa, and S. Ohta, “Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice,” Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol., vol. 34, no. 2, pp. 501–508, 2009.
  • [11] P. Maier, N. Lauth, C. L. Mendis, M. Bechly, and N. Hort, “Mechanical and corrosion properties of two precipitation-hardened Mg-Y-Nd-Gd-Dy alloys with small changes in chemical composition,” JOM, vol. 71, no. 4, pp. 1426–1435, 2019.
  • [12] G. Ben-Hamu, D. Eliezer, A. Kaya, Y. G. Na, and K. S. Shin, “Microstructure and corrosion behavior of Mg–Zn–Ag alloys,” Mater. Sci. Eng. A, vol. 435–436, pp. 579–587, 2006.
  • [13] Y. Feng, S. Zhu, L. Wang, L. Chang, Y. Hou, and S. Guan, “Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: Microstructure, mechanical properties, corrosion behavior and antibacterial activities,” Bioact. Mater., vol. 3, no. 3, pp. 225–235, 2018.
  • [14] X. Zhang, Z. Ba, Z. Wang, X. He, C. Shen, and Q. Wang, “Influence of silver addition on microstructure and corrosion behavior of Mg–Nd–Zn–Zr alloys for biomedical application,” Mater. Lett., vol. 100, pp. 188–191, 2013.
  • [15] J. Zhang, B. Jiang, Q. Yang, D. Huang, A. Tang, F. Pan, Q. Han, “Role of second phases on the corrosion resistance of Mg-Nd-Zr alloys,” J. Alloys Compd., vol. 849, pp. 156619, 2020.
  • [16] M., Podosek, A. Rakowska, R. Ciach, " The Influence of Dendrite Segregation on Structure of Mg-Ag Alloys", in Proceedings of the Third International Magnesium Conference, Manchester, England, 1996, pp. 545–555.
  • [17] S. Gorsse, C. R. Hutchinson, B. Chevalier, and J.-F. Nie, “A thermodynamic assessment of the Mg–Nd binary system using random solution and associate models for the liquid phase,” J. Alloys Compd., vol. 392, no. 1, pp. 253–262, 2005.
  • [18] S. Delfino, A. Saccone, and R. Ferro, “Phase relationships in the neodymium-magnesium alloy system,” Metall. Trans. A, vol. 21, no. 8, pp. 2109–2114, 1990.
  • [19] J. Wang, Y.-N. Zhang, P. Hudon, I.-H. Jung, M. Medraj, and P. Chartrand, “Experimental study of the phase equilibria in the Mg–Zn–Ag ternary system at 300°C,” J. Alloys Compd., vol. 639, pp. 593–601, 2015.
  • [20] J. Yan, Y. Sun, F. Xue, S. Xue, and W. Tao, “Microstructure and mechanical properties in cast magnesium–neodymium binary alloys,” Mater. Sci. Eng. A, vol. 476, no. 1, pp. 366–371, 2008.
  • [21] C. Su, D. Li, T. Ying, L. Zhou, L. Li, and X. Zeng, “Effect of Nd content and heat treatment on the thermal conductivity of MgNd alloys,” J. Alloys Compd., vol. 685, pp. 114–121, 2016.
  • [22] G. L. Song and A. Atrens, “Corrosion mechanisms of magnesium alloys,” Adv. Eng. Mater., vol. 1, no. 1, pp. 11–33, 1999.
  • [23] E. Ghali, W. Dietzel, and K.-U. Kainer, “General and localized corrosion of magnesium alloys: A critical review,” J. Mater. Eng. Perform., vol. 13, no. 1, pp. 7–23, 2004.
  • [24] G. Song and A. Atrens, “Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance,” Adv. Eng. Mater., vol. 5, no. 12, pp. 837–858, 2003.
  • [25] F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, “Degradable biomaterials based on magnesium corrosion,” Curr. Opin. Solid State Mater. Sci., vol. 12, no. 5, pp. 63–72, 2008.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Levent Elen 0000-0001-8740-7900

Proje Numarası 119M645
Yayımlanma Tarihi 31 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Elen, L. (2022). Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik ve Korozyon Özelliklerine Zn ve Nd Elementlerinin Etkisi. Duzce University Journal of Science and Technology, 10(3), 1372-1382. https://doi.org/10.29130/dubited.996415
AMA Elen L. Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik ve Korozyon Özelliklerine Zn ve Nd Elementlerinin Etkisi. DÜBİTED. Temmuz 2022;10(3):1372-1382. doi:10.29130/dubited.996415
Chicago Elen, Levent. “Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik Ve Korozyon Özelliklerine Zn Ve Nd Elementlerinin Etkisi”. Duzce University Journal of Science and Technology 10, sy. 3 (Temmuz 2022): 1372-82. https://doi.org/10.29130/dubited.996415.
EndNote Elen L (01 Temmuz 2022) Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik ve Korozyon Özelliklerine Zn ve Nd Elementlerinin Etkisi. Duzce University Journal of Science and Technology 10 3 1372–1382.
IEEE L. Elen, “Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik ve Korozyon Özelliklerine Zn ve Nd Elementlerinin Etkisi”, DÜBİTED, c. 10, sy. 3, ss. 1372–1382, 2022, doi: 10.29130/dubited.996415.
ISNAD Elen, Levent. “Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik Ve Korozyon Özelliklerine Zn Ve Nd Elementlerinin Etkisi”. Duzce University Journal of Science and Technology 10/3 (Temmuz 2022), 1372-1382. https://doi.org/10.29130/dubited.996415.
JAMA Elen L. Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik ve Korozyon Özelliklerine Zn ve Nd Elementlerinin Etkisi. DÜBİTED. 2022;10:1372–1382.
MLA Elen, Levent. “Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik Ve Korozyon Özelliklerine Zn Ve Nd Elementlerinin Etkisi”. Duzce University Journal of Science and Technology, c. 10, sy. 3, 2022, ss. 1372-8, doi:10.29130/dubited.996415.
Vancouver Elen L. Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik ve Korozyon Özelliklerine Zn ve Nd Elementlerinin Etkisi. DÜBİTED. 2022;10(3):1372-8.