Araştırma Makalesi
BibTex RIS Kaynak Göster

LCA-based Carbon Footprint of Biological and Advanced Biological Wastewater Treatment Plants

Yıl 2023, Cilt: 11 Sayı: 4, 1847 - 1860, 24.10.2023
https://doi.org/10.29130/dubited.1242081

Öz

Wastewater treatment plants (WWTP), designed and built to produce clean effluent by removing pollutants from wastewater, are the basic requirement for urban systems. These plants reduce the environmental impacts that may occur due to the discharge of raw wastewater into receiving environments. On the other hand, it is important to evaluate the environmental sustainability of them due to consumption of resources (such as water, electricity) and emitting emissions (such as methane, nitrous oxide) during their activities. In this study, the carbon footprint of the one biological (classical activated sludge process) and one advanced biological (A2/O process) wastewater treatment plant with different characteristics was calculated and compared with the life cycle approach. Carbon footprint is an indicator of global warming potential (GWP) in life cycle assessment (LCA). Within the scope of this study, SimaPro 9.2 software and IPCC 2013(100a) impact assessment method were used. As a result of the impact assessment the GWP of the wastewater treatment plant with the A2/O process was calculated as 1.64 kg CO2 eq/m3.wastewater, and the GWP of the wastewater treatment plant with the classical activated sludge process was calculated as 1.23 kg CO2 eq/m3.wastewater. When the results of the inventory analysis were investigated, it was determined that the GWP impact category was related to the methane (CH4) and nitrous oxide (N2O) emissions in wastewater treatment plants. When the contribution of treatment plant units on GWP impact category were compared, the contribution of the biological treatment unit was determined as the highest. Considering the impacts of the processes (water recovery, sewage sludge disposal, direct greenhouse gas emissions, discharge of treated wastewater to the receiving environment, chemical consumption, transportation and electricity consumption) during operational stage of wastewater treatment plants, it was determined that the method chosen for treatment sludge disposal and electricity consumption are important and decisive on the GWP impact category.

Proje Numarası

FKA-2020-2087

Kaynakça

  • [1] Türkiye Cumhuriyeti Cumhurbaşkanlığı, Strateji ve Bütçe Başkanlığı. (2023, 27 Ocak). Sürdürülebilir Kalkınma Hakkında Temel Bilgiler [Çevrimiçi]. Erişim: http://www.surdurulebilirkalkinma.gov.tr/temel-tanimlar.
  • [2] Global Compact Network Türkiye. (2023, 26 Ocak). Sürdürülebilir Kalkınma Amaçları [Çevrimiçi]. Erişim: https://www.globalcompactturkiye.org/surdurulebilir-kalkinma-amaclari.
  • [3] T. van den Brand, and A.L. de Jong, “The environmental impacts of resource recovery,” in Resource Recovery from Water: Principles and Application. 1st ed., London, U.K: IWA Publishing, 2022, pp. 415-430.
  • [4] G. Finnveden, M.Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg. & S. Suh, “Recent developments in life cycle assessment,” Journal of Environmental Management, vol. 91(1), pp. 1-21, 2009.
  • [5] R.J. Plevin, R. J., M.A. Delucchi, & F. Creutzig, “Using attributional life cycle assessment to estimate climate‐change mitigation benefits misleads policy makers,” Journal of Industrial Ecology, vol. 18(1), pp. 73-83, 2014.
  • [6] J.C. Pasqualino, M. Meneses, M. Abella, & F. Castells, “LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant,” Environmental Science & Technology, vol. 43(9), pp. 3300-3307, 2009.
  • [7] E. Risch, C. Boutin, & P. Roux, “Applying life cycle assessment to assess the environmental performance of decentralised versus centralised wastewater systems,” Water Research, vol. 196, 116991, 2021.
  • [8] S.M. Rahman, M.J. Eckelman, A. Onnis-Hayden, & A.Z. Gu, “Life-cycle assessment of advanced nutrient removal technologies for wastewater treatment,” Environmental Science & Technology, vol. 50(6), pp. 3020-3030, 2016.
  • [9] G.R.A. Gongora, R.H. Lu, & A. El Hanandeh, “Comparative life cycle assessment of aerobic treatment units and constructed wetlands as onsite wastewater treatment systems in Australia,” Water Science and Technology, vol. 84(6), pp. 1527-1540, 2021.
  • [10] P.K. Cornejo, “Environmental sustainability of wastewater treatment plants integrated with resource recovery: the impact of context and scale”, Ph.D. dissertation, Department of Civil and Environmental Engineering, University of South Florida, USA, 2015.
  • [11] E. Gómez-Llanos, A. Matías-Sánchez, & P. Durán-Barroso, “Wastewater treatment plant assessment by quantifying the carbon and water footprint,” Water, vol. 12(11), pp. 3204, 2020.
  • [12] A. Delre, M. ten Hoeve, & C. Scheutz, “Site-specific carbon footprints of Scandinavian wastewater treatment plants, using the life cycle assessment approach,” Journal of Cleaner Production, vol. 211, pp. 1001-1014, 2019.
  • [13] O.O. Ortíz-Rodriguez, G. Sonnemann, & R.A. Villamizar-G, “The carbon footprint of water treatment as well as sewer and sanitation utilities of Pamplona in Colombia”, Environment, Development and Sustainability, vol. 24(3), pp 3982-3999, 2022.
  • [14] Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14040 Standard, 2006.
  • [15] Environmental management. Life cycle assessment. Requirements and guidelines. ISO 14044 Standard, 2006.
  • [16] L. Corominas, D.M. Byrne, J.S. Guest, A. Hospido, P. Roux, A. Shaw, & M.D. Short, “The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review,” Water Research, vol. 184, pp. 116058, 2020.
  • [17] E. Calvo Buendia, K. Tanabe, A. Kranjc, A. J. Baasansuren, M. Fukuda, S. Ngarize, & S. Federici, “Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories”, IPCC, Geneva, Switzerland, 2019.
  • [18] MNE Proje. (2023, 6 Ocak). Atıksu Arıtma Tesislerinin Enerji Verimli İşletilmesi [Çevrimiçi]. Erişim: http://www.mneproje.com/public/website/news/aritma-tesislerinin-enerji-verimli-isletilme si_20200607101337.pdf.
  • [19] Y. Lorenzo-Toja, C. Alfonsín, M.J. Amores, X. Aldea, D. Marin, M.T. Moreira, & G. Feijoo, “Beyond the conventional life cycle inventory in wastewater treatment plants,” Science of the Total Environment, vol. 553, pp. 71-82, 2016.
  • [20] E. Friedrich, S. Pillay, & C.A. Buckley, “Carbon footprint analysis for increasing water supply and sanitation in South Africa: a case study,” Journal of Cleaner Production, vol. 17(1), pp. 1-12, 2009.
  • [21] M.R.J. Daelman, E.M. van Voorthuizen, L.G.J.M. Van Dongen, E.I.P. Volcke, & M.C.M. Van Loosdrecht, “Methane and nitrous oxide emissions from municipal wastewater treatment–results from a long-term study,” Water Science and Technology, vol. 67(10), pp. 2350-2355, 2013.
  • [22] C. Chai, D. Zhang, Y. Yu, Y. Feng, & M.S. Wong, “Carbon footprint analyses of mainstream wastewater treatment technologies under different sludge treatment scenarios in China,” Water, vol. 7(3), pp. 918-938, 2015.

Biyolojik ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi

Yıl 2023, Cilt: 11 Sayı: 4, 1847 - 1860, 24.10.2023
https://doi.org/10.29130/dubited.1242081

Öz

Atıksuda bulunan kirleticileri gidererek temiz çıkış suyu üretmek için tasarlanan ve inşa edilen atıksu arıtma tesisleri (AAT), kentsel sistemler için temel gereksinimdir. Söz konusu tesisler ham atıksuyun alıcı ortamlara deşarjı nedeniyle oluşabilecek çevresel etkilerin azaltılmasını sağlamaktadır. Buna karşılık, faaliyetleri sürecinde gerek kaynak tüketimleri (su, elektrik gibi) gerekse emisyon oluşturmaları (metan, nitroz oksit gibi) nedeniyle bu tesislerin çevresel açıdan sürdürülebilirliklerinin değerlendirilmesi önem taşımaktadır. Bu çalışmada, farklı özellikler taşıyan bir adet biyolojik (klasik aktif çamur prosesi) ve bir adet ileri biyolojik (A2/O prosesi) atıksu arıtma tesisinin işletilmesi sürecinin karbon ayak izi yaşam döngüsü yaklaşımı ile hesaplanmış ve karşılaştırılmıştır. Karbon ayak izi, yaşam döngüsü değerlendirmesi (YDD)’nde küresel ısınma potansiyelinin (KIP) bir göstergesidir. Çalışma kapsamında SimaPro 9.2 yazılımı ve IPCC 2013(100a) etki değerlendirme metodu kullanılmıştır. Gerçekleştirilen etki değerlendirme sonucunda, A2/O prosesine sahip atıksu arıtma tesisinin küresel ısınma potansiyeli 1,64 kg CO2 eşd/m3.atıksu, klasik aktif çamur prosesine sahip atıksu arıtma tesisinin küresel ısınma potansiyeli ise 1,23 kg CO2 eşd/m3.atıksu olarak hesaplanmıştır. Envanter analizi sonuçları araştırıldığında, değerlendirmenin yapıldığı atıksu arıtma tesislerine bağlı ortaya çıkan KIP etkisinin metan (CH4) ve nitroz oksit (N2O) emisyonları ile ilişkili olduğu belirlenmiştir. Arıtma tesisi ünitelerinin KIP üzerindeki etkileri karşılaştırıldığında, biyolojik arıtma ünitesinin KIP üzerindeki katkısının en yüksek olduğu belirlenmiştir. Atıksu arıtma tesislerinin işletilmesi sürecindeki proseslerin (su geri kazanımı, arıtma çamuru bertarafı, direkt sera gazı oluşumu, arıtılmış atıksuyun alıcı ortama deşarjı, kimyasal madde tüketimi, nakliye ve elektrik tüketimi) etkileri değerlendirildiğinde ise arıtma çamuru bertarafı için seçilen yöntemin ve elektrik tüketiminin küresel ısınma potansiyeli etki kategorisi üzerinde önemli ve belirleyici olduğu tespit edilmiştir.

Destekleyen Kurum

Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FKA-2020-2087

Teşekkür

Bu çalışma Kocaeli Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: FKA-2020-2087).

Kaynakça

  • [1] Türkiye Cumhuriyeti Cumhurbaşkanlığı, Strateji ve Bütçe Başkanlığı. (2023, 27 Ocak). Sürdürülebilir Kalkınma Hakkında Temel Bilgiler [Çevrimiçi]. Erişim: http://www.surdurulebilirkalkinma.gov.tr/temel-tanimlar.
  • [2] Global Compact Network Türkiye. (2023, 26 Ocak). Sürdürülebilir Kalkınma Amaçları [Çevrimiçi]. Erişim: https://www.globalcompactturkiye.org/surdurulebilir-kalkinma-amaclari.
  • [3] T. van den Brand, and A.L. de Jong, “The environmental impacts of resource recovery,” in Resource Recovery from Water: Principles and Application. 1st ed., London, U.K: IWA Publishing, 2022, pp. 415-430.
  • [4] G. Finnveden, M.Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg. & S. Suh, “Recent developments in life cycle assessment,” Journal of Environmental Management, vol. 91(1), pp. 1-21, 2009.
  • [5] R.J. Plevin, R. J., M.A. Delucchi, & F. Creutzig, “Using attributional life cycle assessment to estimate climate‐change mitigation benefits misleads policy makers,” Journal of Industrial Ecology, vol. 18(1), pp. 73-83, 2014.
  • [6] J.C. Pasqualino, M. Meneses, M. Abella, & F. Castells, “LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant,” Environmental Science & Technology, vol. 43(9), pp. 3300-3307, 2009.
  • [7] E. Risch, C. Boutin, & P. Roux, “Applying life cycle assessment to assess the environmental performance of decentralised versus centralised wastewater systems,” Water Research, vol. 196, 116991, 2021.
  • [8] S.M. Rahman, M.J. Eckelman, A. Onnis-Hayden, & A.Z. Gu, “Life-cycle assessment of advanced nutrient removal technologies for wastewater treatment,” Environmental Science & Technology, vol. 50(6), pp. 3020-3030, 2016.
  • [9] G.R.A. Gongora, R.H. Lu, & A. El Hanandeh, “Comparative life cycle assessment of aerobic treatment units and constructed wetlands as onsite wastewater treatment systems in Australia,” Water Science and Technology, vol. 84(6), pp. 1527-1540, 2021.
  • [10] P.K. Cornejo, “Environmental sustainability of wastewater treatment plants integrated with resource recovery: the impact of context and scale”, Ph.D. dissertation, Department of Civil and Environmental Engineering, University of South Florida, USA, 2015.
  • [11] E. Gómez-Llanos, A. Matías-Sánchez, & P. Durán-Barroso, “Wastewater treatment plant assessment by quantifying the carbon and water footprint,” Water, vol. 12(11), pp. 3204, 2020.
  • [12] A. Delre, M. ten Hoeve, & C. Scheutz, “Site-specific carbon footprints of Scandinavian wastewater treatment plants, using the life cycle assessment approach,” Journal of Cleaner Production, vol. 211, pp. 1001-1014, 2019.
  • [13] O.O. Ortíz-Rodriguez, G. Sonnemann, & R.A. Villamizar-G, “The carbon footprint of water treatment as well as sewer and sanitation utilities of Pamplona in Colombia”, Environment, Development and Sustainability, vol. 24(3), pp 3982-3999, 2022.
  • [14] Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14040 Standard, 2006.
  • [15] Environmental management. Life cycle assessment. Requirements and guidelines. ISO 14044 Standard, 2006.
  • [16] L. Corominas, D.M. Byrne, J.S. Guest, A. Hospido, P. Roux, A. Shaw, & M.D. Short, “The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review,” Water Research, vol. 184, pp. 116058, 2020.
  • [17] E. Calvo Buendia, K. Tanabe, A. Kranjc, A. J. Baasansuren, M. Fukuda, S. Ngarize, & S. Federici, “Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories”, IPCC, Geneva, Switzerland, 2019.
  • [18] MNE Proje. (2023, 6 Ocak). Atıksu Arıtma Tesislerinin Enerji Verimli İşletilmesi [Çevrimiçi]. Erişim: http://www.mneproje.com/public/website/news/aritma-tesislerinin-enerji-verimli-isletilme si_20200607101337.pdf.
  • [19] Y. Lorenzo-Toja, C. Alfonsín, M.J. Amores, X. Aldea, D. Marin, M.T. Moreira, & G. Feijoo, “Beyond the conventional life cycle inventory in wastewater treatment plants,” Science of the Total Environment, vol. 553, pp. 71-82, 2016.
  • [20] E. Friedrich, S. Pillay, & C.A. Buckley, “Carbon footprint analysis for increasing water supply and sanitation in South Africa: a case study,” Journal of Cleaner Production, vol. 17(1), pp. 1-12, 2009.
  • [21] M.R.J. Daelman, E.M. van Voorthuizen, L.G.J.M. Van Dongen, E.I.P. Volcke, & M.C.M. Van Loosdrecht, “Methane and nitrous oxide emissions from municipal wastewater treatment–results from a long-term study,” Water Science and Technology, vol. 67(10), pp. 2350-2355, 2013.
  • [22] C. Chai, D. Zhang, Y. Yu, Y. Feng, & M.S. Wong, “Carbon footprint analyses of mainstream wastewater treatment technologies under different sludge treatment scenarios in China,” Water, vol. 7(3), pp. 918-938, 2015.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Simge Taner Çankaya 0000-0003-3095-7826

Beyhan Pekey 0000-0003-4889-742X

Proje Numarası FKA-2020-2087
Yayımlanma Tarihi 24 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 4

Kaynak Göster

APA Taner Çankaya, S., & Pekey, B. (2023). Biyolojik ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(4), 1847-1860. https://doi.org/10.29130/dubited.1242081
AMA Taner Çankaya S, Pekey B. Biyolojik ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi. DÜBİTED. Ekim 2023;11(4):1847-1860. doi:10.29130/dubited.1242081
Chicago Taner Çankaya, Simge, ve Beyhan Pekey. “Biyolojik Ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, sy. 4 (Ekim 2023): 1847-60. https://doi.org/10.29130/dubited.1242081.
EndNote Taner Çankaya S, Pekey B (01 Ekim 2023) Biyolojik ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 4 1847–1860.
IEEE S. Taner Çankaya ve B. Pekey, “Biyolojik ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi”, DÜBİTED, c. 11, sy. 4, ss. 1847–1860, 2023, doi: 10.29130/dubited.1242081.
ISNAD Taner Çankaya, Simge - Pekey, Beyhan. “Biyolojik Ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/4 (Ekim 2023), 1847-1860. https://doi.org/10.29130/dubited.1242081.
JAMA Taner Çankaya S, Pekey B. Biyolojik ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi. DÜBİTED. 2023;11:1847–1860.
MLA Taner Çankaya, Simge ve Beyhan Pekey. “Biyolojik Ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 11, sy. 4, 2023, ss. 1847-60, doi:10.29130/dubited.1242081.
Vancouver Taner Çankaya S, Pekey B. Biyolojik ve İleri Biyolojik Atıksu Arıtma Tesislerinin Karbon Ayak İzinin Yaşam Döngüsü Temelinde Belirlenmesi. DÜBİTED. 2023;11(4):1847-60.