Araştırma Makalesi
BibTex RIS Kaynak Göster

Inspection of Surface Damage in Composite Materials with Different Techniques

Yıl 2023, Cilt: 11 Sayı: 5, 2365 - 2372, 29.12.2023
https://doi.org/10.29130/dubited.1373335

Öz

Due to their excellent physical properties and high strength and stiffness relative to density, aerospace industry research is producing high-performance structural materials, such as composites, which are used in many critical structural parts like airframes, wings, rotor blades, propellers, and other components. However, during flight, these materials may be damaged by impact, thermal stress, moisture, and ultraviolet radiation. One of the most prevalent issues with composite materials is their challenging nature in terms of flaw detection during both manufacturing and use. When they are employed in the crucial areas that were previously indicated, this becomes a very serious issue. When evaluating the structural integrity of composites and looking for any damage, microscopes are a very useful instrument. Effective methods for identifying and analyzing damage include microscopic procedures like optical microscopy, stereomicroscopy, scanning electron microscopy (SEM), scanning ion microscopy (SIM), and atomic force microscopy (AFM). A variety of methods may be employed with microscopes to examine and identify deterioration in composite materials. It is often possible to examine overt deterioration on the surface of composite materials under the microscope utilizing a number of different approaches and procedures. Determining the kind, extent, distribution, and impact of the damage requires these inspections. Often employed techniques consist of: SEM is a method for high-resolution imaging of surface damage. It entails shining an electron beam onto the sample's surface and capturing pictures. SEM is a useful tool for identifying erosion, delamination, and microcracks. It is also possible to measure things like the damage's breadth and depth. Optical microscopes have a large field of view and look at damaged regions. This makes it possible to find tiny fractures or cracks that are invisible to the unaided eye. Furthermore, details on the degree of harm, the roughness of the surface, and the breadth and depth of the fractures may be acquired. To see damaged objects, optical microscopy is utilized. Cracks and damage locations are visible with optical microscopy. Optical microscopes can identify different kinds of damage by looking at the surface of the material. Damage like delamination, fiber breakage, cracks, and deformations are a few examples of these. This study examines the efficacy of microscopic methods and non-destructive testing in assessing the different kinds of damage that can occur at the interfaces between holes in composite materials. Composite test materials were chosen from glass fiber reinforced phenolic matrix composites that were produced in compliance with aerospace standards. The measurements led to the conclusion that using microscopic techniques has benefits like speed and field suitability. However, the continuous development and improvement of new methods in this field will contribute to a better understanding of layered composite materials and the development of safer and more durable structures.

Kaynakça

  • [1] Y. Li, Y. Xiao, L. Yu, K. Ji, and D. Li, “A review on the tooling technologies for composites manufacturing of aerospace structures: materials, structures and processes,” Compos Part A Appl Sci Manuf, vol. 154, p. 106762, Mar. 2022, doi: 10.1016/J.COMPOSITESA.2021.106762.
  • [2] A. M. Abrão, P. E. Faria, J. C. C. Rubio, P. Reis, and J. P. Davim, “Drilling of fiber reinforced plastics: A review,” Journal of Materials Processing Technology, vol. 186, no. 1–3. pp. 1–7, May 07, 2007. doi: 10.1016/j.jmatprotec.2006.11.146.
  • [3] H. Yang et al., “Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials: A review,” Composite Structures, vol. 324. Elsevier Ltd, Nov. 15, 2023. doi: 10.1016/j.compstruct.2023.117554.
  • [4] P. Journoud, C. Bouvet, B. Castanié, and L. Ratsifandrihana, “Effect of defects combined with impact damage on compressive residual strength in curved CFRP specimen,” Thin-Walled Structures, vol. 184, Mar. 2023, doi: 10.1016/j.tws.2022.110484.
  • [5] S. L. Ogin, P. Brøndsted, and J. Zangenberg, “Composite materials: constituents, architecture, and generic damage,” Modeling Damage, Fatigue and Failure of Composite Materials, pp. 3–23, Jan. 2016, doi: 10.1016/B978-1-78242-286-0.00001-7.
  • [6] M. Bowkett and K. Thanapalan, “Comparative analysis of failure detection methods of composites materials’ systems,” Systems Science and Control Engineering, vol. 5, no. 1. Taylor and Francis Ltd., pp. 168–177, Jan. 01, 2017. doi: 10.1080/21642583.2017.1311240.
  • [7] H. TOWSYFYAN, A. BIGURI, R. BOARDMAN, and T. BLUMENSATH, “Successes and challenges in non-destructive testing of aircraft composite structures,” Chinese Journal of Aeronautics, vol. 33, no. 3, pp. 771–791, Mar. 2020, doi: 10.1016/J.CJA.2019.09.017.
  • [8] A. Zarei, S. Farahani, and S. Pilla, “An experimental study on the manufacturing of engineered defects in composite plates,” Composites Part C: Open Access, vol. 9, Oct. 2022, doi: 10.1016/j.jcomc.2022.100327.
  • [9] C. Jubsilp, P. Mora, C. W. Bielawski, Z. Lu, and S. Rimdusit, “Thermosetting matrix based glass and carbon fiber composites,” Fiber Reinforced Composites: Constituents, Compatibility, Perspectives and Applications, pp. 341–403, Jan. 2021, doi: 10.1016/B978-0-12-821090-1.00012-0.
  • [10] S. O. Ismail, H. N. Dhakal, I. Popov, and J. Beaugrand, “Comprehensive study on machinability of sustainable and conventional fibre reinforced polymer composites,” Engineering Science and Technology, an International Journal, vol. 19, no. 4, pp. 2043–2052, Dec. 2016, doi: 10.1016/J.JESTCH.2016.07.010.
  • [11] A. Hejjaji, D. Singh, S. Kubher, D. Kalyanasundaram, and S. Gururaja, “Machining damage in FRPs: Laser versus conventional drilling,” Compos Part A Appl Sci Manuf, vol. 82, pp. 42–52, Mar. 2016, doi: 10.1016/J.COMPOSITESA.2015.11.036.
  • [12] V. Lopresto, A. Caggiano, and R. Teti, “High Performance Cutting of Fibre Reinforced Plastic Composite Materials,” Procedia CIRP, vol. 46, pp. 71–82, 2016, doi: 10.1016/J.PROCIR.2016.05.079.
  • [13] M. B. Lazar and P. Xirouchakis, “Experimental analysis of drilling fiber reinforced composites,” Int J Mach Tools Manuf, vol. 51, no. 12, pp. 937–946, Dec. 2011, doi: 10.1016/J.IJMACHTOOLS.2011.08.009.
  • [14] A. A. A. Nasir, A. I. Azmi, and A. N. M. Khalil, “Parametric Study on the Residual Tensile Strength of Flax Natural Fibre Composites after Drilling Operation,” Procedia Manuf, vol. 2, pp. 97–101, Jan. 2015, doi: 10.1016/J.PROMFG.2015.07.017.
  • [15] S. Vigneshwaran, M. Uthayakumar, and V. Arumugaprabu, “Review on Machinability of Fiber Reinforced Polymers: A Drilling Approach,” Silicon, vol. 10, no. 5, pp. 2295–2305, Sep. 2018, doi: 10.1007/s12633-018-9764-9.
  • [16] N. Roy and S. Gurusideswar, “Material characterization of polymer nanocomposites for aerospace applications,” Mater Today Proc, Jun. 2023, doi: 10.1016/j.matpr.2023.05.606.

Kompozit Malzemelerde Yüzey Hasarlarının Farklı Tekniklerle İncelenmesi

Yıl 2023, Cilt: 11 Sayı: 5, 2365 - 2372, 29.12.2023
https://doi.org/10.29130/dubited.1373335

Öz

Havacılık ve uzay endüstrisinin ticari ve askeri uçakların performansını artırmaya yönelik araştırmalar, yüksek performanslı yapısal malzemelerin geliştirilmesine yol açmaktadır. Kompozit malzemeler, mevcut ve gelecekteki havacılık ve uzay bileşenlerinde önemli bir rol oynayan bu tür malzeme sınıflarından biridir. Kompozit malzemeler, yüksek mukavemet ile sertlik-yoğunluk oranları ve üstün fiziksel özellikleri nedeniyle havacılık ve uzay uygulamaları için özellikle uygulanabilir bir malzeme türü olarak kullanılmaktadır.[1] Uçak gövdeleri, kanatlar, rotor kanatları, pervaneler ve diğer bileşenler gibi birçok kritik yapısal parçada kompozit malzemeler bulunmaktadır. Ancak, uçuş sırasında oluşabilecek darbeler, termal gerilmeler, nem, ultraviyole ışınları gibi faktörler nedeniyle hasarlar meydana gelebilir. Kompozit malzemelerin kullanımı sırasında sık karşılaşılan problemlerden birisi gerek üretim gerekse kullanımları sırasında meydana gelen kusurların tespitinin zor olmasıdır. Özellikle yukarıda değinilen kritik sahalarda kullanımında bu durum daha büyük bir problem olarak öne çıkmaktadır. Mikroskoplar, kompozit malzemelerin yapısal bütünlüğünü değerlendirmek ve potansiyel hasarları tespit etmek için kullanılan güçlü bir araçtır. Optik mikroskopi, stereo microskopi, taramalı elektron mikroskopi (SEM), taramalı iyon mikroskopisi(SIM) ve atomik kuvvet mikroskopisi (AFM) gibi mikroskopik teknikler, hasarların belirlenmesi ve analiz edilmesi için kullanılan etkili araçlardır. Mikroskoplar, kompozit malzemelerdeki hasarların tespiti ve analizi için farklı tekniklerle kullanılabilir. Kompozit malzemelerin yüzeyindeki açık hasarların mikroskopla incelenmesi, genellikle bir dizi teknik ve yöntem kullanılarak gerçekleştirilir. Bu incelemeler, hasarın türünü, büyüklüğünü, dağılımını ve etkisini belirlemek için önemlidir. Bazı yaygın kullanılan yöntemler şunlardır; SEM, yüzeydeki hasarları yüksek çözünürlükte görüntülemek için kullanılan bir tekniktir. Elektron demeti kullanarak numunenin yüzeyine odaklanır ve görüntüler elde eder. SEM, mikro çatlakları, tabakalaşma ve erozyonu tespit etmek için etkili bir yöntemdir. Ayrıca, hasarın derinliği ve genişliği gibi ölçümler yapılabilir. Optik mikroskoplar, hasarlı bölgeleri geniş bir görüş alanında inceler. Bu sayede çıplak gözle görülemeyen küçük çatlaklar veya kırılmalar tespit edilebilir. Ayrıca, hasar boyutu, yüzey pürüzlülüğü, çatlakların derinliği ve genişliği gibi bilgiler elde edilebilir. Optik mikroskopi, hasar bölgelerini ve çatlakları görselleştirmek için kullanılır. Optik mikroskoplar, malzeme yüzeyini inceleyerek hasar türlerini tespit edebilir. Bunlar arasında delaminasyon (katmanların ayrılması), fiber kırılması, çatlaklar, deformasyonlar gibi hasarlar bulunabilir. Bu çalışmada, tahribatsız muayene ve mikroskobik teknikler kullanılarak, kompozit malzemelerin delik ara yüzeylerinde meydana gelen çeşitli hasar türlerinin değerlendirilebilme etkinliği incelenmiştir. Kompozit malzeme olarak havacılık standartlarında üretilmiş cam fiber takviyeli fenolik matrisli kompozitler seçilmiştir. Ölçümler sonucunda; mikroskobik tekniklerinde, hız ve sahaya uygunluk gibi avantajları ile kullanılabilir olduğu sonucuna varılmıştır. Bununla birlikte, bu alanda sürekli olarak yeni yöntemlerin geliştirilmesi ve geliştirilmesi, katmanlı kompozit malzemelerin daha iyi anlaşılmasına ve daha güvenli ve dayanıklı yapıların geliştirilmesine katkıda bulunacaktır.

Kaynakça

  • [1] Y. Li, Y. Xiao, L. Yu, K. Ji, and D. Li, “A review on the tooling technologies for composites manufacturing of aerospace structures: materials, structures and processes,” Compos Part A Appl Sci Manuf, vol. 154, p. 106762, Mar. 2022, doi: 10.1016/J.COMPOSITESA.2021.106762.
  • [2] A. M. Abrão, P. E. Faria, J. C. C. Rubio, P. Reis, and J. P. Davim, “Drilling of fiber reinforced plastics: A review,” Journal of Materials Processing Technology, vol. 186, no. 1–3. pp. 1–7, May 07, 2007. doi: 10.1016/j.jmatprotec.2006.11.146.
  • [3] H. Yang et al., “Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials: A review,” Composite Structures, vol. 324. Elsevier Ltd, Nov. 15, 2023. doi: 10.1016/j.compstruct.2023.117554.
  • [4] P. Journoud, C. Bouvet, B. Castanié, and L. Ratsifandrihana, “Effect of defects combined with impact damage on compressive residual strength in curved CFRP specimen,” Thin-Walled Structures, vol. 184, Mar. 2023, doi: 10.1016/j.tws.2022.110484.
  • [5] S. L. Ogin, P. Brøndsted, and J. Zangenberg, “Composite materials: constituents, architecture, and generic damage,” Modeling Damage, Fatigue and Failure of Composite Materials, pp. 3–23, Jan. 2016, doi: 10.1016/B978-1-78242-286-0.00001-7.
  • [6] M. Bowkett and K. Thanapalan, “Comparative analysis of failure detection methods of composites materials’ systems,” Systems Science and Control Engineering, vol. 5, no. 1. Taylor and Francis Ltd., pp. 168–177, Jan. 01, 2017. doi: 10.1080/21642583.2017.1311240.
  • [7] H. TOWSYFYAN, A. BIGURI, R. BOARDMAN, and T. BLUMENSATH, “Successes and challenges in non-destructive testing of aircraft composite structures,” Chinese Journal of Aeronautics, vol. 33, no. 3, pp. 771–791, Mar. 2020, doi: 10.1016/J.CJA.2019.09.017.
  • [8] A. Zarei, S. Farahani, and S. Pilla, “An experimental study on the manufacturing of engineered defects in composite plates,” Composites Part C: Open Access, vol. 9, Oct. 2022, doi: 10.1016/j.jcomc.2022.100327.
  • [9] C. Jubsilp, P. Mora, C. W. Bielawski, Z. Lu, and S. Rimdusit, “Thermosetting matrix based glass and carbon fiber composites,” Fiber Reinforced Composites: Constituents, Compatibility, Perspectives and Applications, pp. 341–403, Jan. 2021, doi: 10.1016/B978-0-12-821090-1.00012-0.
  • [10] S. O. Ismail, H. N. Dhakal, I. Popov, and J. Beaugrand, “Comprehensive study on machinability of sustainable and conventional fibre reinforced polymer composites,” Engineering Science and Technology, an International Journal, vol. 19, no. 4, pp. 2043–2052, Dec. 2016, doi: 10.1016/J.JESTCH.2016.07.010.
  • [11] A. Hejjaji, D. Singh, S. Kubher, D. Kalyanasundaram, and S. Gururaja, “Machining damage in FRPs: Laser versus conventional drilling,” Compos Part A Appl Sci Manuf, vol. 82, pp. 42–52, Mar. 2016, doi: 10.1016/J.COMPOSITESA.2015.11.036.
  • [12] V. Lopresto, A. Caggiano, and R. Teti, “High Performance Cutting of Fibre Reinforced Plastic Composite Materials,” Procedia CIRP, vol. 46, pp. 71–82, 2016, doi: 10.1016/J.PROCIR.2016.05.079.
  • [13] M. B. Lazar and P. Xirouchakis, “Experimental analysis of drilling fiber reinforced composites,” Int J Mach Tools Manuf, vol. 51, no. 12, pp. 937–946, Dec. 2011, doi: 10.1016/J.IJMACHTOOLS.2011.08.009.
  • [14] A. A. A. Nasir, A. I. Azmi, and A. N. M. Khalil, “Parametric Study on the Residual Tensile Strength of Flax Natural Fibre Composites after Drilling Operation,” Procedia Manuf, vol. 2, pp. 97–101, Jan. 2015, doi: 10.1016/J.PROMFG.2015.07.017.
  • [15] S. Vigneshwaran, M. Uthayakumar, and V. Arumugaprabu, “Review on Machinability of Fiber Reinforced Polymers: A Drilling Approach,” Silicon, vol. 10, no. 5, pp. 2295–2305, Sep. 2018, doi: 10.1007/s12633-018-9764-9.
  • [16] N. Roy and S. Gurusideswar, “Material characterization of polymer nanocomposites for aerospace applications,” Mater Today Proc, Jun. 2023, doi: 10.1016/j.matpr.2023.05.606.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Makaleler
Yazarlar

Seyid Fehmi Diltemiz 0000-0002-3952-4456

Ersin Eroğlu 0000-0002-8670-2606

Aykut Batar 0009-0008-9508-779X

Sezer Yumrukaya 0009-0008-0496-8226

Yayımlanma Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 5

Kaynak Göster

APA Diltemiz, S. F., Eroğlu, E., Batar, A., Yumrukaya, S. (2023). Inspection of Surface Damage in Composite Materials with Different Techniques. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(5), 2365-2372. https://doi.org/10.29130/dubited.1373335
AMA Diltemiz SF, Eroğlu E, Batar A, Yumrukaya S. Inspection of Surface Damage in Composite Materials with Different Techniques. DÜBİTED. Aralık 2023;11(5):2365-2372. doi:10.29130/dubited.1373335
Chicago Diltemiz, Seyid Fehmi, Ersin Eroğlu, Aykut Batar, ve Sezer Yumrukaya. “Inspection of Surface Damage in Composite Materials With Different Techniques”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, sy. 5 (Aralık 2023): 2365-72. https://doi.org/10.29130/dubited.1373335.
EndNote Diltemiz SF, Eroğlu E, Batar A, Yumrukaya S (01 Aralık 2023) Inspection of Surface Damage in Composite Materials with Different Techniques. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 5 2365–2372.
IEEE S. F. Diltemiz, E. Eroğlu, A. Batar, ve S. Yumrukaya, “Inspection of Surface Damage in Composite Materials with Different Techniques”, DÜBİTED, c. 11, sy. 5, ss. 2365–2372, 2023, doi: 10.29130/dubited.1373335.
ISNAD Diltemiz, Seyid Fehmi vd. “Inspection of Surface Damage in Composite Materials With Different Techniques”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/5 (Aralık 2023), 2365-2372. https://doi.org/10.29130/dubited.1373335.
JAMA Diltemiz SF, Eroğlu E, Batar A, Yumrukaya S. Inspection of Surface Damage in Composite Materials with Different Techniques. DÜBİTED. 2023;11:2365–2372.
MLA Diltemiz, Seyid Fehmi vd. “Inspection of Surface Damage in Composite Materials With Different Techniques”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 11, sy. 5, 2023, ss. 2365-72, doi:10.29130/dubited.1373335.
Vancouver Diltemiz SF, Eroğlu E, Batar A, Yumrukaya S. Inspection of Surface Damage in Composite Materials with Different Techniques. DÜBİTED. 2023;11(5):2365-72.