Araştırma Makalesi
BibTex RIS Kaynak Göster

Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems

Yıl 2024, Cilt: 12 Sayı: 4, 2115 - 2130, 23.10.2024
https://doi.org/10.29130/dubited.1460109

Öz

Our utilization of waste heat sources, combined with multiple power generation systems and systems featuring gradual expansion, constitutes a crucial domain in terms of energy and exergy analysis. Within these systems, the utilization of energies derived from various power sources reveals the availability of system components, highlighting the importance of meticulous analysis during design and operation to mitigate energy and exergy losses. Energy and exergy analysis stands as a pivotal method employed throughout the design, operation, and maintenance phases of these systems. This study initiates with the commencement of the combustion chamber temperature and turbine output temperature of a UGT-25000 gas turbine, followed by the development of the system through gradual expansion processes. A comprehensive thermodynamic analysis of the integrated power generation system was conducted, encompassing heat transitions across the H2O Rankine cycle, R113 ORC cycle, S-CO2 cycle, electrolyzer, and NH3H2O absorption cycle along with successive sub-cycles. Additionally, energy extraction from turbines was facilitated through the gradual expansion of the air-Brayton, R113-ORC, H2O-Rankine, and S-CO2 cycles. The resulting net powers are as follows: 0.0034 kg/s of hydrogen produced with the electrolyzer from the Air Brayton cycle, 34,314 kW; H2O Rankine cycle, 1,828 kW; R113 ORC, 681 kW; NH3H2O absorption cycle, 2,985 kW; and S-CO2 cycle, 1,720 kW. The energy efficiency of the multi-integrated system is calculated to be 66.35%, with an exergy efficiency of 35%.

Kaynakça

  • [1] Mohammadi, K., Ellingwood, K., & Powell, K. (2020). A novel triple power cycle featuring a gas turbine cycle with supercritical carbon dioxide and organic Rankine cycles: Thermoeconomic analysis and optimization. Energy Conversion and Management, 220, 113123.
  • [2] Ran, P., Zhou, X., Wang, Y., Fan, Q., Xin, D., & Li, Z. (2023). Thermodynamic and exergetic analysis of a novel multi-generation system based on SOFC, micro-gas turbine, S-CO2 and lithium bromide absorption refrigerator. Applied Thermal Engineering, 219, 119585.
  • [3] Khan, M. S., Mubeen, I., Jingyi, W., Zhang, Y., Zhu, G., & Yan, M. (2022). Development and performance assessment of a novel solar-assisted multigenerational system using high temperature phase change material. International Journal of Hydrogen Energy, 47(62), 26178-26197.
  • [4] Khani, N., Manesh, M. H. K., & Onishi, V. C. (2022). 6E analyses of a new solar energy-driven polygeneration system integrating CO2 capture, organic Rankine cycle, and humidification-dehumidification desalination. Journal of Cleaner Production, 379, 134478.
  • [5] Peng, W., Chen, H., Liu, J., Zhao, X., & Xu, G. (2021). Techno-economic assessment of a conceptual waste-to-energy CHP system combining plasma gasification, SOFC, gas turbine and supercritical CO2 cycle. Energy Conversion and Management, 245, 114622.
  • [6] Khosravi, N. (2017). Design and Analysis of a Novel Renewable Multi-Generation System through Energetic and Exergetic. Investigation (Master's thesis, Eastern Mediterranean University EMU-Doğu Akdeniz Üniversitesi (DAÜ)).
  • [7] Panahirad, B. (2017). Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel (Master's thesis, Eastern Mediterranean University EMU-Doğu Akdeniz Üniversitesi (DAÜ)).
  • [8] Zhang, T., & Zhao, H. (2022). Thermodynamic analysis of a new hybrid system combined heat and power integrated solid oxide fuel cell, gas turbine, Rankine steam cycle with compressed air energy storage. Energy, 2004, 2965.
  • [9] Hai, T., Zhou, J., Almojil, S. F., Almohana, A. I., Alali, A. F., Mehrez, S., ... & Almoalimi, K. T. (2023). Deep learning optimization and techno-environmental analysis of a solar-driven multigeneration system for producing sustainable hydrogen and electricity: A case study of San Francisco. International Journal of Hydrogen Energy, 48(6), 2055-2074.
  • [10] Wu, B., Luo, Y., Feng, Y., Zhu, C., & Yang, P. (2023). Design and thermodynamic analysis of solid oxide fuel cells–internal combustion engine combined cycle system based on Two-Stage waste heat preheating and EGR. Fuel, 342, 127817.
  • [11] Qin, L., Xie, G., Ma, Y., & Li, S. (2023). Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle. Energy, 265, 126332.
  • [12] Atif, M., & Al-Sulaiman, F. A. (2017). Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations. Renewable and Sustainable Energy Reviews, 68, 153-167.
  • [13] Elbir, A., Şahin, M. E., Özgür, A. E., & Bayrakçı, H. C. (2023). Thermodynamıc Analysıs Of A Novel Combıned Supercrıtıcal CO2 And Organıc Rankıne Cycle. International Journal of Engineering and Innovative Research, 5(1), 33-47.
  • [14] Gogoi, T. K., Lahon, D., & Nondy, J. (2023). Energy, exergy and exergoeconomic (3E) analyses of an organic Rankine cycle integrated combined cycle power plant. Thermal Science and Engineering Progress, 41, 101849.
  • [15] Bamisile, O., Cai, D., Adedeji, M., Dagbasi, M., Hu, Y., & Huang, Q. (2023). Environmental impact and thermodynamic comparative optimization of CO2-based multi-energy systems powered with geothermal energy. Science of The Total Environment, 168459.
  • [16] Elmaihy, A., Rashad, A., Elweteedy, A., & Nessim, W. (2023). Energy and exergy analyses for organic Rankine cycle driven by cooling water of passenger car engine using sixteen working fluids. Energy Conversion and Management: X, 20, 100415.
  • [17] Manesh, M. K., Mehrabian, M. J., Nourpour, M., & Onishi, V. C. (2023). Risk and 4E analyses and optimization of a novel solar-natural gas-driven polygeneration system based on Integration of Gas Turbine–SCO2–ORC-solar PV-PEM electrolyzer. Energy, 263, 125777.
  • [18] Bamisile, O., Cai, D., Adedeji, M., Dagbasi, M., Li, J., Hu, Y., & Huang, Q. (2023). Thermo-enviro-exergoeconomic analysis and multi-objective optimization of a novel geothermal-solar-wind micro-multi-energy system for cleaner energy production. Process Safety and Environmental Protection, 170, 157-175.
  • [19] Ding, G. C., Peng, J. I., & Mei-Yun, G. E. N. G. (2023). Technical assessment of Multi-generation energy system driven by integrated renewable energy Sources: Energetic, exergetic and optimization approaches. Fuel, 331, 125689.
  • [20] Cao, Y., Habibi, H., Zoghi, M., & Raise, A. (2021). Waste heat recovery of a combined regenerative gas turbine-recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and parametric study. Energy, 236, 121432.
  • [21] Шкляр, В. И., Дубровская, В. В., Задвернюк, В. В., & Колпаков, А. Г. (2010). Эксергетический анализ работы газотурбинной установки. Промышленная теплотехника
  • [22] Szargut, J. (2007). Egzergia: poradnik obliczania i stosowania. Wydawnictwo Politechniki Śląskiej.
  • [23] Cengel YA, Boles MA, Thermodynamics: an engineering approach. McGraw-Hill New York; 2011.
  • [24] Dincer I, Rosen MA: Exergy: energy, environment and sustainable development. Elsevier Science; 2012.
  • [25] Bejan A., Tsatsaronis G., Moran M. 1996, Thermal design and optimization. New York: Jonh Wiley and Sons
  • [26] Elbir, A., Bayrakçi, H. C., Özgür, A. E., Deniz, Ö. (2022). Experimental analysis of a transcritical heat pump system with CO2 refrigerant. International Advanced Researches and Engineering Journal, 6(3), 186-193.
  • [27] Klein SA. Engineering Equation Solver(EES) 2020, F-Chart Software, Version 10.835-3D.

Kademeli Genişlemeli Çoklu Güç Üretim Sistemleri İle Birlikte Yeni Modeller İçin Enerji ve Ekserji Analizi

Yıl 2024, Cilt: 12 Sayı: 4, 2115 - 2130, 23.10.2024
https://doi.org/10.29130/dubited.1460109

Öz

Atık ısıl kaynakların kullanımı, birden fazla güç üretim sistemi ve kademeli genişleme özelliklerine sahip sistemlerle birleştirilerek, enerji ve ekserji analizi açısından kritik bir alan oluşturur. Bu sistemler içinde, çeşitli güç kaynaklarından elde edilen enerjilerin kullanımı, sistem bileşenlerinin kullanılabilirliğini ortaya çıkararak, tasarım ve işletme sırasında enerji ve ekserji kayıplarını azaltmak için titiz bir analizin önemini vurgular. Enerji ve ekserji analizi, bu sistemlerin tasarımı, işletilmesi ve bakım aşamaları boyunca kullanılan temel bir yöntemdir. Bu çalışma, bir UGT-25000 gaz türbininin yanma odası sıcaklığı ve türbin çıkış sıcaklığı ile başlar ve ardından sistem, kademeli genişleme süreçleriyle geliştirilir. Entegre güç üretim sisteminin kapsamlı termodinamik analizi yapılmış olup, H2O Rankine çevrimi, R113 ORC çevrimi, S-CO2 çevrimi, elektrolizer ve NH3H2O emilim çevrimi ile ardışık alt çevrimler arasındaki ısı geçişlerini içerir. Ayrıca, türbünlardan enerji çıkarılması, hava-Brayton, R113-ORC, H2O-Rankine ve S-CO2 çevrimlerinin kademeli genişlemesi ile kolaylaştırılmıştır. Elde edilen net güçler aşağıdaki gibidir: Elektrolizerden Air Brayton çevrimiyle üretilen hidrojen miktarı 0,0034 kg/s, 34.314 kW; H2O Rankine çevrimi, 1.828 kW; R113 ORC, 681 kW; NH3H2O emilim çevrimi, 2.985 kW; ve S-CO2 çevrimi, 1.720 kW. Çoklu entegre sistemimizin enerji verimliliği %66,35 olarak hesaplanmış olup, ekserji verimliliği %35'tir.

Kaynakça

  • [1] Mohammadi, K., Ellingwood, K., & Powell, K. (2020). A novel triple power cycle featuring a gas turbine cycle with supercritical carbon dioxide and organic Rankine cycles: Thermoeconomic analysis and optimization. Energy Conversion and Management, 220, 113123.
  • [2] Ran, P., Zhou, X., Wang, Y., Fan, Q., Xin, D., & Li, Z. (2023). Thermodynamic and exergetic analysis of a novel multi-generation system based on SOFC, micro-gas turbine, S-CO2 and lithium bromide absorption refrigerator. Applied Thermal Engineering, 219, 119585.
  • [3] Khan, M. S., Mubeen, I., Jingyi, W., Zhang, Y., Zhu, G., & Yan, M. (2022). Development and performance assessment of a novel solar-assisted multigenerational system using high temperature phase change material. International Journal of Hydrogen Energy, 47(62), 26178-26197.
  • [4] Khani, N., Manesh, M. H. K., & Onishi, V. C. (2022). 6E analyses of a new solar energy-driven polygeneration system integrating CO2 capture, organic Rankine cycle, and humidification-dehumidification desalination. Journal of Cleaner Production, 379, 134478.
  • [5] Peng, W., Chen, H., Liu, J., Zhao, X., & Xu, G. (2021). Techno-economic assessment of a conceptual waste-to-energy CHP system combining plasma gasification, SOFC, gas turbine and supercritical CO2 cycle. Energy Conversion and Management, 245, 114622.
  • [6] Khosravi, N. (2017). Design and Analysis of a Novel Renewable Multi-Generation System through Energetic and Exergetic. Investigation (Master's thesis, Eastern Mediterranean University EMU-Doğu Akdeniz Üniversitesi (DAÜ)).
  • [7] Panahirad, B. (2017). Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel (Master's thesis, Eastern Mediterranean University EMU-Doğu Akdeniz Üniversitesi (DAÜ)).
  • [8] Zhang, T., & Zhao, H. (2022). Thermodynamic analysis of a new hybrid system combined heat and power integrated solid oxide fuel cell, gas turbine, Rankine steam cycle with compressed air energy storage. Energy, 2004, 2965.
  • [9] Hai, T., Zhou, J., Almojil, S. F., Almohana, A. I., Alali, A. F., Mehrez, S., ... & Almoalimi, K. T. (2023). Deep learning optimization and techno-environmental analysis of a solar-driven multigeneration system for producing sustainable hydrogen and electricity: A case study of San Francisco. International Journal of Hydrogen Energy, 48(6), 2055-2074.
  • [10] Wu, B., Luo, Y., Feng, Y., Zhu, C., & Yang, P. (2023). Design and thermodynamic analysis of solid oxide fuel cells–internal combustion engine combined cycle system based on Two-Stage waste heat preheating and EGR. Fuel, 342, 127817.
  • [11] Qin, L., Xie, G., Ma, Y., & Li, S. (2023). Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle. Energy, 265, 126332.
  • [12] Atif, M., & Al-Sulaiman, F. A. (2017). Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations. Renewable and Sustainable Energy Reviews, 68, 153-167.
  • [13] Elbir, A., Şahin, M. E., Özgür, A. E., & Bayrakçı, H. C. (2023). Thermodynamıc Analysıs Of A Novel Combıned Supercrıtıcal CO2 And Organıc Rankıne Cycle. International Journal of Engineering and Innovative Research, 5(1), 33-47.
  • [14] Gogoi, T. K., Lahon, D., & Nondy, J. (2023). Energy, exergy and exergoeconomic (3E) analyses of an organic Rankine cycle integrated combined cycle power plant. Thermal Science and Engineering Progress, 41, 101849.
  • [15] Bamisile, O., Cai, D., Adedeji, M., Dagbasi, M., Hu, Y., & Huang, Q. (2023). Environmental impact and thermodynamic comparative optimization of CO2-based multi-energy systems powered with geothermal energy. Science of The Total Environment, 168459.
  • [16] Elmaihy, A., Rashad, A., Elweteedy, A., & Nessim, W. (2023). Energy and exergy analyses for organic Rankine cycle driven by cooling water of passenger car engine using sixteen working fluids. Energy Conversion and Management: X, 20, 100415.
  • [17] Manesh, M. K., Mehrabian, M. J., Nourpour, M., & Onishi, V. C. (2023). Risk and 4E analyses and optimization of a novel solar-natural gas-driven polygeneration system based on Integration of Gas Turbine–SCO2–ORC-solar PV-PEM electrolyzer. Energy, 263, 125777.
  • [18] Bamisile, O., Cai, D., Adedeji, M., Dagbasi, M., Li, J., Hu, Y., & Huang, Q. (2023). Thermo-enviro-exergoeconomic analysis and multi-objective optimization of a novel geothermal-solar-wind micro-multi-energy system for cleaner energy production. Process Safety and Environmental Protection, 170, 157-175.
  • [19] Ding, G. C., Peng, J. I., & Mei-Yun, G. E. N. G. (2023). Technical assessment of Multi-generation energy system driven by integrated renewable energy Sources: Energetic, exergetic and optimization approaches. Fuel, 331, 125689.
  • [20] Cao, Y., Habibi, H., Zoghi, M., & Raise, A. (2021). Waste heat recovery of a combined regenerative gas turbine-recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and parametric study. Energy, 236, 121432.
  • [21] Шкляр, В. И., Дубровская, В. В., Задвернюк, В. В., & Колпаков, А. Г. (2010). Эксергетический анализ работы газотурбинной установки. Промышленная теплотехника
  • [22] Szargut, J. (2007). Egzergia: poradnik obliczania i stosowania. Wydawnictwo Politechniki Śląskiej.
  • [23] Cengel YA, Boles MA, Thermodynamics: an engineering approach. McGraw-Hill New York; 2011.
  • [24] Dincer I, Rosen MA: Exergy: energy, environment and sustainable development. Elsevier Science; 2012.
  • [25] Bejan A., Tsatsaronis G., Moran M. 1996, Thermal design and optimization. New York: Jonh Wiley and Sons
  • [26] Elbir, A., Bayrakçi, H. C., Özgür, A. E., Deniz, Ö. (2022). Experimental analysis of a transcritical heat pump system with CO2 refrigerant. International Advanced Researches and Engineering Journal, 6(3), 186-193.
  • [27] Klein SA. Engineering Equation Solver(EES) 2020, F-Chart Software, Version 10.835-3D.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimyasal Termodinamik ve Enerji Bilimi, Enerji, Yenilenebilir Enerji Sistemleri
Bölüm Makaleler
Yazarlar

Ahmet Elbir 0000-0001-8934-7665

Yayımlanma Tarihi 23 Ekim 2024
Gönderilme Tarihi 27 Mart 2024
Kabul Tarihi 2 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Elbir, A. (2024). Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems. Duzce University Journal of Science and Technology, 12(4), 2115-2130. https://doi.org/10.29130/dubited.1460109
AMA Elbir A. Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems. DÜBİTED. Ekim 2024;12(4):2115-2130. doi:10.29130/dubited.1460109
Chicago Elbir, Ahmet. “Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems”. Duzce University Journal of Science and Technology 12, sy. 4 (Ekim 2024): 2115-30. https://doi.org/10.29130/dubited.1460109.
EndNote Elbir A (01 Ekim 2024) Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems. Duzce University Journal of Science and Technology 12 4 2115–2130.
IEEE A. Elbir, “Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems”, DÜBİTED, c. 12, sy. 4, ss. 2115–2130, 2024, doi: 10.29130/dubited.1460109.
ISNAD Elbir, Ahmet. “Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems”. Duzce University Journal of Science and Technology 12/4 (Ekim 2024), 2115-2130. https://doi.org/10.29130/dubited.1460109.
JAMA Elbir A. Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems. DÜBİTED. 2024;12:2115–2130.
MLA Elbir, Ahmet. “Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems”. Duzce University Journal of Science and Technology, c. 12, sy. 4, 2024, ss. 2115-30, doi:10.29130/dubited.1460109.
Vancouver Elbir A. Energy And Exergy Analysis For A New Models With Gradual Expansion Combined With Multiple Power Generation Systems. DÜBİTED. 2024;12(4):2115-30.