Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı ÇukurlKanat Konfigürasyonları ve Açılarının Entropi Üretimi, Akış Davranışları ve Termal Performans Üzerindeki Etkisi

Yıl 2024, Cilt: 12 Sayı: 4, 1895 - 1912, 23.10.2024
https://doi.org/10.29130/dubited.1473175

Öz

Son yapılan çalışmalar, çukurlu kanatçıklara sahip kanallardaki akışın önemli ölçüde termal performans iyileştirmesi sağladığını vurgulamaktadır. Ancak günümüzde bu kanat çeşitliliği öne çıkmasına rağmen, hangi geometrinin daha iyi performans sağladığına dair kapsamlı bir çalışma bulunmamaktadır. Bu çalışmada, düz boru üzerinde işlenmiş ve aynı yüzey alanına sahip 6 farklı geometri ve 17 farklı konfigürasyonuna sahip çukur kanatların, ısı transferi, entropi üretimi ve performans etkileri, sürekli durum, ısıl ve hidrodinamik olarak gelişen akış koşullarında sayısal olarak analiz edilmiştir. Çalışma akışkanının su olduğu ve laminer koşullar altında (1000≤Re≤2000) akışın gerçekleştiği varsayılmıştır. Elde edilen sonuçlara göre akışa paralel olarak düzenlenmiş küp şekilli çukur kanatlar (CuDT/C), en yüksek ortalama Nusselt sayısını sağlamıştır ve düz kanal ile kıyaslandığında Re=1000, 1500 ve 2000 için sırasıyla %95,21, %176,25 ve %272,13 artışlar kaydedilmiştir. CuDT/C’nin performans değerlendirme kriterini Re=1000, 1500 ve 2000 için sırasıyla %65,94, %115,96 ve %176,79 oranlarında artırdığı belirlenmiştir.

Kaynakça

  • [1] C. Maradiya, J. Vadher, and R. Agarwal, “The heat transfer enhancement techniques and their Thermal Performance Factor,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 7, no. 1, pp. 1–21, Mar. 2018, doi: 10.1016/J.BJBAS.2017.10.001.
  • [2] M. H. Mousa, N. Miljkovic, and K. Nawaz, “Review of heat transfer enhancement techniques for single phase flows,” Renew. Sustain. Energy Rev., vol. 137, p. 110566, Mar. 2021, doi: 10.1016/J.RSER.2020.110566.
  • [3] S. S. Mousavi Ajarostaghi, M. Zaboli, H. Javadi, B. Badenes, and J. F. Urchueguia, “A Review of Recent Passive Heat Transfer Enhancement Methods,” Energies, vol. 15, no. 3, p. 986, Jan. 2022, doi: 10.3390/en15030986.
  • [4] M. R. Ali et al., “Effect of design parameters on passive control of heat transfer enhancement phenomenon in heat exchangers–A brief review,” Case Stud. Therm. Eng., vol. 43, p. 102674, Mar. 2023, doi: 10.1016/J.CSITE.2022.102674.
  • [5] H. Lu, M. Xu, L. Gong, X. Duan, and J. C. Chai, “Effects of surface roughness in microchannel with passive heat transfer enhancement structures,” Int. J. Heat Mass Transf., vol. 148, p. 119070, Feb. 2020, doi: 10.1016/J.IJHEATMASSTRANSFER.2019.119070.
  • [6] S. Paul, N. Lubaba, N. A. Pratik, M. H. Ali, and M. M. Alam, “Computational investigation of cross flow heat exchanger: A study for performance enhancement using spherical dimples on fin surface,” Int. J. Thermofluids, vol. 20, p. 100483, Nov. 2023, doi: 10.1016/J.IJFT.2023.100483.
  • [7] H. K. Pazarlıoğlu et al., “The first and second law analyses of thermodynamics for CoFe2O4/H2O flow in a sudden expansion tube inserted elliptical dimpled fins,” Int. J. Mech. Sci., vol. 246, p. 108144, May 2023, doi: 10.1016/J.IJMECSCI.2023.108144.
  • [8] L. Zhang, W. Xiong, J. Zheng, Z. Liang, and S. Xie, “Numerical analysis of heat transfer enhancement and flow characteristics inside cross-combined ellipsoidal dimple tubes,” Case Stud. Therm. Eng., vol. 25, p. 100937, Jun. 2021, doi: 10.1016/J.CSITE.2021.100937.
  • [9] R. Sabir, M. M. Khan, N. A. Sheikh, and I. U. Ahad, “Effect of dimple pitch on thermal-hydraulic performance of tubes enhanced with ellipsoidal and teardrop dimples,” Case Stud. Therm. Eng., vol. 31, p. 101835, Mar. 2022, doi: 10.1016/J.CSITE.2022.101835.
  • [10] H. Bucak and F. Yilmaz, “Thermo-hydraulic Performance Investigation of Twisted Tapes Having Teardrop-Shaped Dimple-Protrusion Patterns,” Chem. Eng. Process. - Process Intensif., vol. 168, p. 108593, Nov. 2021, doi: 10.1016/J.CEP.2021.108593.
  • [11] A. Mironov, S. Isaev, A. Skrypnik, and I. Popov, “Numerical and physical simulation of heat transfer enhancement using oval dimple vortex generators—Review and recommendations,” Energies, vol. 13, no. 20, p. 5243, 2020.
  • [12] A. Bejan and A. D. Kraus, Heat Transfer Handbook, Volume 1. John Wiley & Sons, Inc., 2003. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=d4cgNG_IUq8C&pgis=1
  • [13] E. Gürsoy, H. K. Pazarlıoğlu, M. Gürdal, E. Gedik, and K. Arslan, “Entropy generation of ferronanofluid flow in industrially designed bended dimpled tube,” Therm. Sci. Eng. Prog., vol. 37, p. 101620, Jan. 2023, doi: 10.1016/J.TSEP.2022.101620.
  • [14] E. Gürsoy, E. Çalar, A. Dağdeviren, H. K. Pazarlıoğlu, E. Gedik, and K. Arslan, “Thermo-hydraulic Performance Analysis of Al2O3/water Nanofluid Flow in a Tube Extended by Twisted Tape,” Int. J. Therm. Eng. Mod. Energ., vol. 1, pp. 34–47, 2022, doi: 10.51558/2831-0527.2022.1.1.34.
  • [15] E. Gürsoy et al., “Effect of magnetic field locations on thermo-magnetic convection performance of Fe3O4/H2O ferrofluid flowing in a novel dimpled tube: An experimental study,” Appl. Therm. Eng., vol. 226, p. 120305, May 2023, doi: 10.1016/J.APPLTHERMALENG.2023.120305.
  • [16] E. Gürsoy et al., “Energy analysis of magnetite nanofluid flowing in newly designed sudden expansion tube retrofitted with dimpled fin,” Int. J. Heat Mass Transf., vol. 199, p. 123446, Dec. 2022, doi: 10.1016/J.IJHEATMASSTRANSFER.2022.123446.
  • [17] R. K. Shah and A. L. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic press, 2014.
  • [18] A. F. Mills, “Basic heat and mass transfer,” (No Title), 1999.
  • [19] Y. A. Çengel and J. M. Cimbala, Fluid Mechanics A Fundamental Approach. 2018.
  • [20] Y. A. Çengel and A. J. Ghajar, Heat and Mass Transfer Fundamentals & Applications, vol. 59. 2015.

Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance

Yıl 2024, Cilt: 12 Sayı: 4, 1895 - 1912, 23.10.2024
https://doi.org/10.29130/dubited.1473175

Öz

Recent studies highlight that flow in tubes with dimpled fins provides significant thermal performance improvement. Although the variety of these fins comes to the fore today, there is no comprehensive study on which geometry provides better performance. In this study, the heat transfer, entropy generation, and performance effects of dimpled fins with 6 different geometries and 17 different configurations, machined on a smooth tube and having the same surface area, were numerically analysed under steady-state, thermally and hydrodynamically developing flow conditions. Water has been considered as working fluid and it flowed under laminar conditions (1000≤Re≤2000). According to obtained results, the cube-shaped dimpled fins arranged as parallel to flow (CuDT/C) exhibit the highest average Nusselt number, with increases of 95.21%, 176.25%, and 272.13% for Re=1000, 1500, and 2000, respectively, compared to smoot tube. It has been determined that CuDT/C increases the performance evaluation criterion at the rates of 65.94%, 115.96%, and 176.79% for Re=1000, 1500, and 2000, respectively.

Kaynakça

  • [1] C. Maradiya, J. Vadher, and R. Agarwal, “The heat transfer enhancement techniques and their Thermal Performance Factor,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 7, no. 1, pp. 1–21, Mar. 2018, doi: 10.1016/J.BJBAS.2017.10.001.
  • [2] M. H. Mousa, N. Miljkovic, and K. Nawaz, “Review of heat transfer enhancement techniques for single phase flows,” Renew. Sustain. Energy Rev., vol. 137, p. 110566, Mar. 2021, doi: 10.1016/J.RSER.2020.110566.
  • [3] S. S. Mousavi Ajarostaghi, M. Zaboli, H. Javadi, B. Badenes, and J. F. Urchueguia, “A Review of Recent Passive Heat Transfer Enhancement Methods,” Energies, vol. 15, no. 3, p. 986, Jan. 2022, doi: 10.3390/en15030986.
  • [4] M. R. Ali et al., “Effect of design parameters on passive control of heat transfer enhancement phenomenon in heat exchangers–A brief review,” Case Stud. Therm. Eng., vol. 43, p. 102674, Mar. 2023, doi: 10.1016/J.CSITE.2022.102674.
  • [5] H. Lu, M. Xu, L. Gong, X. Duan, and J. C. Chai, “Effects of surface roughness in microchannel with passive heat transfer enhancement structures,” Int. J. Heat Mass Transf., vol. 148, p. 119070, Feb. 2020, doi: 10.1016/J.IJHEATMASSTRANSFER.2019.119070.
  • [6] S. Paul, N. Lubaba, N. A. Pratik, M. H. Ali, and M. M. Alam, “Computational investigation of cross flow heat exchanger: A study for performance enhancement using spherical dimples on fin surface,” Int. J. Thermofluids, vol. 20, p. 100483, Nov. 2023, doi: 10.1016/J.IJFT.2023.100483.
  • [7] H. K. Pazarlıoğlu et al., “The first and second law analyses of thermodynamics for CoFe2O4/H2O flow in a sudden expansion tube inserted elliptical dimpled fins,” Int. J. Mech. Sci., vol. 246, p. 108144, May 2023, doi: 10.1016/J.IJMECSCI.2023.108144.
  • [8] L. Zhang, W. Xiong, J. Zheng, Z. Liang, and S. Xie, “Numerical analysis of heat transfer enhancement and flow characteristics inside cross-combined ellipsoidal dimple tubes,” Case Stud. Therm. Eng., vol. 25, p. 100937, Jun. 2021, doi: 10.1016/J.CSITE.2021.100937.
  • [9] R. Sabir, M. M. Khan, N. A. Sheikh, and I. U. Ahad, “Effect of dimple pitch on thermal-hydraulic performance of tubes enhanced with ellipsoidal and teardrop dimples,” Case Stud. Therm. Eng., vol. 31, p. 101835, Mar. 2022, doi: 10.1016/J.CSITE.2022.101835.
  • [10] H. Bucak and F. Yilmaz, “Thermo-hydraulic Performance Investigation of Twisted Tapes Having Teardrop-Shaped Dimple-Protrusion Patterns,” Chem. Eng. Process. - Process Intensif., vol. 168, p. 108593, Nov. 2021, doi: 10.1016/J.CEP.2021.108593.
  • [11] A. Mironov, S. Isaev, A. Skrypnik, and I. Popov, “Numerical and physical simulation of heat transfer enhancement using oval dimple vortex generators—Review and recommendations,” Energies, vol. 13, no. 20, p. 5243, 2020.
  • [12] A. Bejan and A. D. Kraus, Heat Transfer Handbook, Volume 1. John Wiley & Sons, Inc., 2003. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=d4cgNG_IUq8C&pgis=1
  • [13] E. Gürsoy, H. K. Pazarlıoğlu, M. Gürdal, E. Gedik, and K. Arslan, “Entropy generation of ferronanofluid flow in industrially designed bended dimpled tube,” Therm. Sci. Eng. Prog., vol. 37, p. 101620, Jan. 2023, doi: 10.1016/J.TSEP.2022.101620.
  • [14] E. Gürsoy, E. Çalar, A. Dağdeviren, H. K. Pazarlıoğlu, E. Gedik, and K. Arslan, “Thermo-hydraulic Performance Analysis of Al2O3/water Nanofluid Flow in a Tube Extended by Twisted Tape,” Int. J. Therm. Eng. Mod. Energ., vol. 1, pp. 34–47, 2022, doi: 10.51558/2831-0527.2022.1.1.34.
  • [15] E. Gürsoy et al., “Effect of magnetic field locations on thermo-magnetic convection performance of Fe3O4/H2O ferrofluid flowing in a novel dimpled tube: An experimental study,” Appl. Therm. Eng., vol. 226, p. 120305, May 2023, doi: 10.1016/J.APPLTHERMALENG.2023.120305.
  • [16] E. Gürsoy et al., “Energy analysis of magnetite nanofluid flowing in newly designed sudden expansion tube retrofitted with dimpled fin,” Int. J. Heat Mass Transf., vol. 199, p. 123446, Dec. 2022, doi: 10.1016/J.IJHEATMASSTRANSFER.2022.123446.
  • [17] R. K. Shah and A. L. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic press, 2014.
  • [18] A. F. Mills, “Basic heat and mass transfer,” (No Title), 1999.
  • [19] Y. A. Çengel and J. M. Cimbala, Fluid Mechanics A Fundamental Approach. 2018.
  • [20] Y. A. Çengel and A. J. Ghajar, Heat and Mass Transfer Fundamentals & Applications, vol. 59. 2015.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Emrehan Gürsoy 0000-0003-2373-3357

Alper Ergün 0000-0003-0402-4088

Engin Gedik 0000-0002-3407-6121

Yayımlanma Tarihi 23 Ekim 2024
Gönderilme Tarihi 24 Nisan 2024
Kabul Tarihi 21 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Gürsoy, E., Ergün, A., & Gedik, E. (2024). Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance. Duzce University Journal of Science and Technology, 12(4), 1895-1912. https://doi.org/10.29130/dubited.1473175
AMA Gürsoy E, Ergün A, Gedik E. Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance. DÜBİTED. Ekim 2024;12(4):1895-1912. doi:10.29130/dubited.1473175
Chicago Gürsoy, Emrehan, Alper Ergün, ve Engin Gedik. “Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance”. Duzce University Journal of Science and Technology 12, sy. 4 (Ekim 2024): 1895-1912. https://doi.org/10.29130/dubited.1473175.
EndNote Gürsoy E, Ergün A, Gedik E (01 Ekim 2024) Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance. Duzce University Journal of Science and Technology 12 4 1895–1912.
IEEE E. Gürsoy, A. Ergün, ve E. Gedik, “Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance”, DÜBİTED, c. 12, sy. 4, ss. 1895–1912, 2024, doi: 10.29130/dubited.1473175.
ISNAD Gürsoy, Emrehan vd. “Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance”. Duzce University Journal of Science and Technology 12/4 (Ekim 2024), 1895-1912. https://doi.org/10.29130/dubited.1473175.
JAMA Gürsoy E, Ergün A, Gedik E. Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance. DÜBİTED. 2024;12:1895–1912.
MLA Gürsoy, Emrehan vd. “Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance”. Duzce University Journal of Science and Technology, c. 12, sy. 4, 2024, ss. 1895-12, doi:10.29130/dubited.1473175.
Vancouver Gürsoy E, Ergün A, Gedik E. Effect of Different Dimpled Fin Configurations and Angles on Entropy Generation, Flow Behavior, and Thermal Performance. DÜBİTED. 2024;12(4):1895-912.