Research Article
BibTex RIS Cite

Model Fabrikaların Verimliliğe Katkısının Çok Kriterli Karar Verme Yöntemi ile Değerlendirilmesi: Öğren-Dönüş Programı Uygulaması

Year 2025, Volume: 13 Issue: 2, 1005 - 1021, 30.04.2025
https://doi.org/10.29130/dubited.1628405

Abstract

Model Fabrikalar, üretim sektöründeki işletmeler için sürekli iyileştirme, yalın üretim ve dijital dönüşüm konularında deneyimsel öğrenme tekniklerini içeren geniş kapsamlı eğitim ve danışmanlık hizmetleri sunmaktadır. Bu uygulamalı eğitimler ve danışmanlık hizmetleri, Endüstri 4.0 yaklaşımına uygun olarak tasarlanmış olup, işletmelerin verimlilik düzeylerini önemli ölçüde artırmayı hedeflemektedir. Türkiye’de 2015 yılından itibaren on ilde model fabrika kurulmuştur. Bunlardan biri Ankara Sanayi Odası (ASO) model fabrikadır. Bu çalışmanın amacı, Ankara Sanayi Odası (ASO) model fabrika Öğren-Dönüş programına katılan firmaların programdan elde ettikleri fayda durumunu incelemektir. Öğren-Dönüş programına katılan işletmelerin programdan fayda durumunu değerlendirmek amacıyla, çalışan sayısı, Öğren-Dönüş programı sonucundaki üretim artış oranı ve yatırımın geri dönüş süreleri WASPAS yöntemi kullanılarak incelenmiştir. Programa katılan firmalar arasında en yüksek faydayı sağlayan firmadan en düşüğe doğru bir sıralama yapılmıştır. Bu sıralamaya göre en yüksek fayda sağlayan F12 firması, ikinci sırada F2 ve üçüncü sırada F6 firması yer almıştır. Birinci sıradaki firma, Öğren-Dönüş programına katılan ve bu firmalar arasında en fazla fayda sağlayan firma olarak belirlenmiştir. Son sıradaki firma ise F18 nolu firma, en az fayda gören firma olarak olduğu değerlendirilmiştir. Bu analiz, model fabrika yönetici, uzmanlarına ve işletme yöneticilerine Öğren-Dönüş programı hakkında değerlendirme yapma imkânı vermektedir.

References

  • [1] M. Tisch, C. Hertle, E. Abele, J. Metternich, and R. Tenberg, “Learning Factory Design: A Competency-Oriented Approach İntegrating Three Design Levels,” International Journal of Computer Integrated Manufacturing, pp. 1–21, 2015.
  • [2] E. Abele, J. Metternich, M. Tisch, G. Chryssolouris, W. Sihn, H. Elmaraghy, and F. Ranz, “Learning Factories For Research, Education, And Training ”, Procedia Cirp, 32, 1-6, 2015
  • [3] J. Cachay, J. Wennemer, E. Abele, and R. Tenberg, “Study On Action-Oriented Learning With A Learning Factory Approach,” Procedia-Social And Behavioral Sciences, vol. 55, pp. 1144–1153, 2012.
  • [4] S. Kreitlein, A. Hӧft, S. Schwender, and J. Franke, “Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production,” Procedia CIRP, vol. 32, pp. 58–63, 2015.
  • [5] L. Morell, and M. Trucco, “A Proven Model to Re-Engineer Engineering Education in Partnership with Industry,” in World Engineering Education Forum, Buenos Aires, Argentina, 2012
  • [6] Sanayi ve Teknoloji Bakanlığı. (2024, 01 Ocak ). Model Fabrika Yaklaşımı [çevrimiçi]. Erişim: https://www.sanayi.gov.tr/merkez-birimi/92d9c73bddbb/model-fabrika.
  • [7] ASO Model Fabrika. (2023, 17 Aralık). Hizmetler [Çevrimiçi]. Erişim: https://www.modelfabrika.org/ogrendonus-programi.
  • [8] S. Chakraborty, E. K. Zavadskas, and J. Antuchevičienė, “Applications Of WASPAS Method As A Multi-Criteria Decision-Making Tool”, etalpykla.vilniustech.lt, 2015.
  • [9] N. Ömürbek, M. Karaatlı ve H. F. Balcı, “Entropi Temelli MAUT Ve SAW Yöntemleri ile Otomotiv Firmalarının Performans Değerlemesi”, Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 31(1), 227-255, 2016.
  • [10] I. S. Yoo, T. Braun, C. Kaestle, M. Spahr, J. Franke, P. Kestel, ve E. Feige, (2016). “Model Factory For Additive Manufacturing Of Mechatronic Products: İnterconnecting World-Class Technology Partnerships With Leading AM Players”, Procedia CIRP, 54, 210-214, 2016.
  • [11] Ö. Akçakanat, H. Eren, E. Aksoy, ve V. Ömürbek, “Bankacilik sektöründe ENTROPI ve WASPAS yöntemleri ile performans değerlendirmesi”, Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(2), 285-300, 2017.
  • [12] N. Ömürbek, H. Eren ve O. Dağ, “Entropi-Aras ve Entropi-Moosra yöntemleri ile yaşam kalitesi açısından AB ülkelerinin değerlendirilmesi”, Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(2), 29-48, 2017.
  • [13] F. Baena, A. Guarin, J. Mora, J. Sauza, and S. Retat, “Learning Factory: The Path To İndustry 4.0.”, Procedia Manufacturing, 9, 73-80, 2017.
  • [14] J. Enke, R. Glass, ve J. Metternich, “Introducing A Maturity Model For Learning Factories”, Procedia Manufacturing,9, 1-8. 2017, 2017.
  • [15] R. C. Putra, I. H. Kusumah, M. Komaro, Y. Rahayu, and E. P. Asfiyanur, “Design Learning of Teaching Factory in Mechanical Engineering”, In IOP Conference Series: Materials Science and Engineering (Vol. 306, No. 1, p. 012104). IOP Publishin, 2018, February.
  • [16] A. Ulutaş, “Entropi Tabanli Edas Yöntemi İle Lojistik Firmalarinin Performans Analizi”, Uluslararası İktisadi Ve İdari İncelemeler Dergisi, (23), 53-66, 2018.
  • [17] L.. F. Leal, A. Fleury, and E. Zancul, “Starting up a Learning Factory focused on Industry 4.0.”, Procedia Manufacturing, 45, 436-441, 2020.
  • [18] K. K.Vijayan, and O. J. Mork, “Idealab: A Learning Factory Concept For Norwegian Manufacturing SME”, Procedia Manufacturing, 45, 411-416, 2020.
  • [19] H. H. Erdoğan ve G. Kırbaç, “Financial Performance Measurement Of Logistics Companies Based On Entropy And WASPAS Methods”, İşletme Araştırmaları Dergisi, 13(2), 1093-1106, 2021.
  • [20] M. Hegedić, P. Gregurić, M. Gudlin, M. Golec, A. Đenadija, N. Tošanović, N. ve Štefanić, “Design and Establishment of a Learning Factory at the FMENA Zagreb”, Tehnički glasnik, 16(3), 426-431, 2022.
  • [21] V. S. Arıkan Kargı, “Evaluation Of Logistics Performance Of The Oecd Member Countries With Integrated Entropy and Waspas Method”, Journal of Management & Economics/Yönetim ve Ekonomi, 29(4), 2022.
  • [22] R. Lukić, “Analysis Of The Performance Of The Serbian Economy Based on the MEREC-WASPAS method”, MARSONIA: Časopis za društvena i humanistička istraživanja, 2(1), 39-52, 2023.
  • [23] E. Gökalp, U. Şener ve P. E. Eren, “Development Of An Assessment Model For İndustry 4.0: İndustry 4.0-MM. In Software Process Improvement And Capability Determination: 17th, 2017.
  • [24] S. Vaidya, P. Ambad, and S. Bhosle, “Industry 4.0–A Glimpse”, Procedia Manufacturing, 20, 233-238, 2018.
  • [25] S. Khin, and D. M. H. Kee, “Factors İnfluencing Industry 4.0 Adoption”, Journal of Manufacturing Technology Management. 33(3), 448-467, 2022.
  • [26] P. Kurttila, M. Shaw, and P. Helo, “Model Factory Concept–Enabler For Quick Manufacturing Capacity Ramp-Up. In European Wind Energy”, Conference and Exhibition, EWEC (Vol. 4),2010.
  • [27] C. Prinz, F. Morlock, S. Freith, N. Kreggenfeld, D. Kreimeier, and B. Kuhlenkötter, “Learning Factory Modules For Smart Factories İn İndustrie 4.0. “, Procedia CiRp, 54, 113-118, 2016.
  • [28] C. Chau Khac Bao, and T. T. Tran, “Development of a Digital Learning Factory Toward Multi Objectives for Engineering Education: An Educational Concept Adopts the Application of Digital Twin. Thanh Trung, Development of a Digital Learning Factory Toward Multi Objectives for Engineering Education: An Educational Concept Adopts the Application of Digital Twin (March 5, 2023).
  • [29] E. Abele, C. J. Bauerdick, N. Strobel, and N. Panten, “ETA Learning Factory: A Holistic Concept For Teaching Energy Efficiency İn Production”, Procedia CIRP, 54, 83-88, 2016.
  • [30] D. T. Matt, E. Rauch, and P. Dallasega, “Mini-Factory–A Learning Factory Concept For Students And Small And Medium Sized Enterprises”, Procedia CiRP, 17, 178-183, 2014.
  • [31] L. Mchauser, C. Schmitz, and M. Hammer, “Model-Factory-In-A-Box: A Portable Solution That Brings The Complexity Of A Real Factory And All The Benefits Of Experiential-Learning Environments Directly To Learners İn İndustry”, Procedia Manufacturing, 45, 246-252, 2020.
  • [32] E. Aksakal ve E. Çalışkan, “Olimpiyatlara Aday Şehirlerin Seçim Sürecinde Dikkate Alınacak Kriterlerin Entropi Yöntemi ile Değerlendirilmesi”, Çok Kriterli Karar Verme Yöntemleri MS Excel Çözüm Uygulamaları”, 1. Baskı, Ankara, Türkiye: Nobel Akademik Yayıncılık, M. Kabak, Y. Çınar, Editör, 2020, böl.10, 13, ss.169-179.
  • [33] Chakraborty, S. and Zavadskas, E. K. (2014). Applications of WASPAS Method in Manufacturing Decision Making. Informatıca, Vol. 25, No. 1, 1–20
  • [34] P. H. Nguyen, T. T. Dang, K. A. Nguyen, and H. A Pham, “Spherical Fuzzy WASPAS-based Entropy Objective Weighting for International Payment Method Selection. Computers, Materials & Continua”,72(1), 2022.
  • [35] G. Stojić, Z. Stević, J. Antuchevičienė, D. Pamučar, and M. Vasiljević, “A Novel Rough WASPAS Approach For Supplier Selection İn A Company Manufacturing PVC Carpentry Products”, Information, 9(5), 12, 2018.
  • [36] S. K. Vaid, G. Vaid, S. Kaur, R. Kumar, and M.S. Sidhu, “Application Of Multi-Criteria Decision-Making Theory With VIKOR-WASPAS-Entropy Methods: A Case Study Of Silent Genset”, Materials Today: Proceedings, 50, 2416-2423, 2022.
  • [37] E. .K. Zavadskas, J. Antucheviciene, S. H. R. Hajiagha, and S.S. Hashemi, “Extension Of Weighted Aggregated Sum Product Assessment With İnterval-Valued İntuitionistic Fuzzy Numbers (WASPAS-IVIF)” Applied Soft Computing, 24, 1013-1021, 2014.
  • [38] B. Ecer, “ WASPAS Yöntemi ile Tedarikçi Seçimi”, Çok Kriterli Karar Verme Yöntemleri MS Excel Çözüm Uygulamaları”, 1. Baskı, Ankara, Türkiye: Nobel Akademik Yayıncılık, M. Kabak, Y. Çınar, Editör, 2020, böl.13, ss.209-219.

Evaluation of the Contribution of Model Factories to Productivity with Multi-Criteria Decision Making Method: Application of Learn & Transform Program

Year 2025, Volume: 13 Issue: 2, 1005 - 1021, 30.04.2025
https://doi.org/10.29130/dubited.1628405

Abstract

Model factory offers a wide range of training and consultancy services, including experiential learning techniques on continuous improvement, lean production, and digital transformation for businesses in the manufacturing sector. The Industry 4.0 approach guides the design of these applied trainings and consultancy services, which aim to significantly boost enterprises' productivity levels. Ten provinces in Türkiye have established model factories since 2015. One of them is the Ankara Chamber of Industry (ACI) model factory. The aim of this study is to examine the benefits of the companies participating in Learn & Transform Program of the ACI model factory. To evaluate the benefit of the companies participating in the Learn & Transform Program, the number of employees, the production increase rate as a result of the Learn & Transform Program, and the return on investment periods were examined using the WASPAS method. We ranked the participating companies in the program from the highest benefit to the lowest. According to this ranking, F12 was the firm that provided the highest benefit, F2 ranked second, and F6 ranked third. The first-ranked company was determined to be the one that participated in the Learn & Transform Program, and provided the highest benefit among these companies. The last ranked firm, F18, was considered to be the least benefited firm. This analysis gives the model factory managers, experts, and business managers the opportunity to evaluate the Learn & Transform Program.

Ethical Statement

Etik ile ilgili sorun bulunmamaktadır

Thanks

Ankara Sanayi Odası Model Fabrika yönetimine teşekkür ederim.

References

  • [1] M. Tisch, C. Hertle, E. Abele, J. Metternich, and R. Tenberg, “Learning Factory Design: A Competency-Oriented Approach İntegrating Three Design Levels,” International Journal of Computer Integrated Manufacturing, pp. 1–21, 2015.
  • [2] E. Abele, J. Metternich, M. Tisch, G. Chryssolouris, W. Sihn, H. Elmaraghy, and F. Ranz, “Learning Factories For Research, Education, And Training ”, Procedia Cirp, 32, 1-6, 2015
  • [3] J. Cachay, J. Wennemer, E. Abele, and R. Tenberg, “Study On Action-Oriented Learning With A Learning Factory Approach,” Procedia-Social And Behavioral Sciences, vol. 55, pp. 1144–1153, 2012.
  • [4] S. Kreitlein, A. Hӧft, S. Schwender, and J. Franke, “Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production,” Procedia CIRP, vol. 32, pp. 58–63, 2015.
  • [5] L. Morell, and M. Trucco, “A Proven Model to Re-Engineer Engineering Education in Partnership with Industry,” in World Engineering Education Forum, Buenos Aires, Argentina, 2012
  • [6] Sanayi ve Teknoloji Bakanlığı. (2024, 01 Ocak ). Model Fabrika Yaklaşımı [çevrimiçi]. Erişim: https://www.sanayi.gov.tr/merkez-birimi/92d9c73bddbb/model-fabrika.
  • [7] ASO Model Fabrika. (2023, 17 Aralık). Hizmetler [Çevrimiçi]. Erişim: https://www.modelfabrika.org/ogrendonus-programi.
  • [8] S. Chakraborty, E. K. Zavadskas, and J. Antuchevičienė, “Applications Of WASPAS Method As A Multi-Criteria Decision-Making Tool”, etalpykla.vilniustech.lt, 2015.
  • [9] N. Ömürbek, M. Karaatlı ve H. F. Balcı, “Entropi Temelli MAUT Ve SAW Yöntemleri ile Otomotiv Firmalarının Performans Değerlemesi”, Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 31(1), 227-255, 2016.
  • [10] I. S. Yoo, T. Braun, C. Kaestle, M. Spahr, J. Franke, P. Kestel, ve E. Feige, (2016). “Model Factory For Additive Manufacturing Of Mechatronic Products: İnterconnecting World-Class Technology Partnerships With Leading AM Players”, Procedia CIRP, 54, 210-214, 2016.
  • [11] Ö. Akçakanat, H. Eren, E. Aksoy, ve V. Ömürbek, “Bankacilik sektöründe ENTROPI ve WASPAS yöntemleri ile performans değerlendirmesi”, Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(2), 285-300, 2017.
  • [12] N. Ömürbek, H. Eren ve O. Dağ, “Entropi-Aras ve Entropi-Moosra yöntemleri ile yaşam kalitesi açısından AB ülkelerinin değerlendirilmesi”, Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(2), 29-48, 2017.
  • [13] F. Baena, A. Guarin, J. Mora, J. Sauza, and S. Retat, “Learning Factory: The Path To İndustry 4.0.”, Procedia Manufacturing, 9, 73-80, 2017.
  • [14] J. Enke, R. Glass, ve J. Metternich, “Introducing A Maturity Model For Learning Factories”, Procedia Manufacturing,9, 1-8. 2017, 2017.
  • [15] R. C. Putra, I. H. Kusumah, M. Komaro, Y. Rahayu, and E. P. Asfiyanur, “Design Learning of Teaching Factory in Mechanical Engineering”, In IOP Conference Series: Materials Science and Engineering (Vol. 306, No. 1, p. 012104). IOP Publishin, 2018, February.
  • [16] A. Ulutaş, “Entropi Tabanli Edas Yöntemi İle Lojistik Firmalarinin Performans Analizi”, Uluslararası İktisadi Ve İdari İncelemeler Dergisi, (23), 53-66, 2018.
  • [17] L.. F. Leal, A. Fleury, and E. Zancul, “Starting up a Learning Factory focused on Industry 4.0.”, Procedia Manufacturing, 45, 436-441, 2020.
  • [18] K. K.Vijayan, and O. J. Mork, “Idealab: A Learning Factory Concept For Norwegian Manufacturing SME”, Procedia Manufacturing, 45, 411-416, 2020.
  • [19] H. H. Erdoğan ve G. Kırbaç, “Financial Performance Measurement Of Logistics Companies Based On Entropy And WASPAS Methods”, İşletme Araştırmaları Dergisi, 13(2), 1093-1106, 2021.
  • [20] M. Hegedić, P. Gregurić, M. Gudlin, M. Golec, A. Đenadija, N. Tošanović, N. ve Štefanić, “Design and Establishment of a Learning Factory at the FMENA Zagreb”, Tehnički glasnik, 16(3), 426-431, 2022.
  • [21] V. S. Arıkan Kargı, “Evaluation Of Logistics Performance Of The Oecd Member Countries With Integrated Entropy and Waspas Method”, Journal of Management & Economics/Yönetim ve Ekonomi, 29(4), 2022.
  • [22] R. Lukić, “Analysis Of The Performance Of The Serbian Economy Based on the MEREC-WASPAS method”, MARSONIA: Časopis za društvena i humanistička istraživanja, 2(1), 39-52, 2023.
  • [23] E. Gökalp, U. Şener ve P. E. Eren, “Development Of An Assessment Model For İndustry 4.0: İndustry 4.0-MM. In Software Process Improvement And Capability Determination: 17th, 2017.
  • [24] S. Vaidya, P. Ambad, and S. Bhosle, “Industry 4.0–A Glimpse”, Procedia Manufacturing, 20, 233-238, 2018.
  • [25] S. Khin, and D. M. H. Kee, “Factors İnfluencing Industry 4.0 Adoption”, Journal of Manufacturing Technology Management. 33(3), 448-467, 2022.
  • [26] P. Kurttila, M. Shaw, and P. Helo, “Model Factory Concept–Enabler For Quick Manufacturing Capacity Ramp-Up. In European Wind Energy”, Conference and Exhibition, EWEC (Vol. 4),2010.
  • [27] C. Prinz, F. Morlock, S. Freith, N. Kreggenfeld, D. Kreimeier, and B. Kuhlenkötter, “Learning Factory Modules For Smart Factories İn İndustrie 4.0. “, Procedia CiRp, 54, 113-118, 2016.
  • [28] C. Chau Khac Bao, and T. T. Tran, “Development of a Digital Learning Factory Toward Multi Objectives for Engineering Education: An Educational Concept Adopts the Application of Digital Twin. Thanh Trung, Development of a Digital Learning Factory Toward Multi Objectives for Engineering Education: An Educational Concept Adopts the Application of Digital Twin (March 5, 2023).
  • [29] E. Abele, C. J. Bauerdick, N. Strobel, and N. Panten, “ETA Learning Factory: A Holistic Concept For Teaching Energy Efficiency İn Production”, Procedia CIRP, 54, 83-88, 2016.
  • [30] D. T. Matt, E. Rauch, and P. Dallasega, “Mini-Factory–A Learning Factory Concept For Students And Small And Medium Sized Enterprises”, Procedia CiRP, 17, 178-183, 2014.
  • [31] L. Mchauser, C. Schmitz, and M. Hammer, “Model-Factory-In-A-Box: A Portable Solution That Brings The Complexity Of A Real Factory And All The Benefits Of Experiential-Learning Environments Directly To Learners İn İndustry”, Procedia Manufacturing, 45, 246-252, 2020.
  • [32] E. Aksakal ve E. Çalışkan, “Olimpiyatlara Aday Şehirlerin Seçim Sürecinde Dikkate Alınacak Kriterlerin Entropi Yöntemi ile Değerlendirilmesi”, Çok Kriterli Karar Verme Yöntemleri MS Excel Çözüm Uygulamaları”, 1. Baskı, Ankara, Türkiye: Nobel Akademik Yayıncılık, M. Kabak, Y. Çınar, Editör, 2020, böl.10, 13, ss.169-179.
  • [33] Chakraborty, S. and Zavadskas, E. K. (2014). Applications of WASPAS Method in Manufacturing Decision Making. Informatıca, Vol. 25, No. 1, 1–20
  • [34] P. H. Nguyen, T. T. Dang, K. A. Nguyen, and H. A Pham, “Spherical Fuzzy WASPAS-based Entropy Objective Weighting for International Payment Method Selection. Computers, Materials & Continua”,72(1), 2022.
  • [35] G. Stojić, Z. Stević, J. Antuchevičienė, D. Pamučar, and M. Vasiljević, “A Novel Rough WASPAS Approach For Supplier Selection İn A Company Manufacturing PVC Carpentry Products”, Information, 9(5), 12, 2018.
  • [36] S. K. Vaid, G. Vaid, S. Kaur, R. Kumar, and M.S. Sidhu, “Application Of Multi-Criteria Decision-Making Theory With VIKOR-WASPAS-Entropy Methods: A Case Study Of Silent Genset”, Materials Today: Proceedings, 50, 2416-2423, 2022.
  • [37] E. .K. Zavadskas, J. Antucheviciene, S. H. R. Hajiagha, and S.S. Hashemi, “Extension Of Weighted Aggregated Sum Product Assessment With İnterval-Valued İntuitionistic Fuzzy Numbers (WASPAS-IVIF)” Applied Soft Computing, 24, 1013-1021, 2014.
  • [38] B. Ecer, “ WASPAS Yöntemi ile Tedarikçi Seçimi”, Çok Kriterli Karar Verme Yöntemleri MS Excel Çözüm Uygulamaları”, 1. Baskı, Ankara, Türkiye: Nobel Akademik Yayıncılık, M. Kabak, Y. Çınar, Editör, 2020, böl.13, ss.209-219.
There are 38 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other)
Journal Section Research Article
Authors

Ali Sevinç 0000-0002-3421-2357

Publication Date April 30, 2025
Submission Date January 28, 2025
Acceptance Date April 11, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Sevinç, A. (2025). Evaluation of the Contribution of Model Factories to Productivity with Multi-Criteria Decision Making Method: Application of Learn & Transform Program. Duzce University Journal of Science and Technology, 13(2), 1005-1021. https://doi.org/10.29130/dubited.1628405
AMA Sevinç A. Evaluation of the Contribution of Model Factories to Productivity with Multi-Criteria Decision Making Method: Application of Learn & Transform Program. DUBİTED. April 2025;13(2):1005-1021. doi:10.29130/dubited.1628405
Chicago Sevinç, Ali. “Evaluation of the Contribution of Model Factories to Productivity With Multi-Criteria Decision Making Method: Application of Learn & Transform Program”. Duzce University Journal of Science and Technology 13, no. 2 (April 2025): 1005-21. https://doi.org/10.29130/dubited.1628405.
EndNote Sevinç A (April 1, 2025) Evaluation of the Contribution of Model Factories to Productivity with Multi-Criteria Decision Making Method: Application of Learn & Transform Program. Duzce University Journal of Science and Technology 13 2 1005–1021.
IEEE A. Sevinç, “Evaluation of the Contribution of Model Factories to Productivity with Multi-Criteria Decision Making Method: Application of Learn & Transform Program”, DUBİTED, vol. 13, no. 2, pp. 1005–1021, 2025, doi: 10.29130/dubited.1628405.
ISNAD Sevinç, Ali. “Evaluation of the Contribution of Model Factories to Productivity With Multi-Criteria Decision Making Method: Application of Learn & Transform Program”. Duzce University Journal of Science and Technology 13/2 (April2025), 1005-1021. https://doi.org/10.29130/dubited.1628405.
JAMA Sevinç A. Evaluation of the Contribution of Model Factories to Productivity with Multi-Criteria Decision Making Method: Application of Learn & Transform Program. DUBİTED. 2025;13:1005–1021.
MLA Sevinç, Ali. “Evaluation of the Contribution of Model Factories to Productivity With Multi-Criteria Decision Making Method: Application of Learn & Transform Program”. Duzce University Journal of Science and Technology, vol. 13, no. 2, 2025, pp. 1005-21, doi:10.29130/dubited.1628405.
Vancouver Sevinç A. Evaluation of the Contribution of Model Factories to Productivity with Multi-Criteria Decision Making Method: Application of Learn & Transform Program. DUBİTED. 2025;13(2):1005-21.