Research Article
BibTex RIS Cite

Kırıcı Binalarının Deprem Etkisi Altındaki Davranışının Sayısal Olarak İncelenmesi

Year 2025, Volume: 13 Issue: 3, 1123 - 1136, 31.07.2025
https://doi.org/10.29130/dubited.1657397

Abstract

Çelik yapılar özellikle endüstride ve bina inşaatlarında sıklıkla kullanılmaktadır. Yaygın kullanımından dolayı birçok araştırmacı çelik yapıların davranışını incelemek için çalışmalar yapmaktadır. Madencilik alanlarında kullanılan çelik yapılar genellikle iletim hatları ve kırıcıların güvenliğini sağlamak için kullanılır. Kırıcılar, madenlerin çalışmaya devam edebilmesi için hayati öneme sahip ekipmanlardır. Bu nedenle kırıcı binaları, kırıcıları korumak için çelik profiller kullanılarak inşa edilir. Bu çalışmanın amacı, kırıcıyı korumak için inşa edilen kırıcı binalarının deprem etkileri altındaki davranışını araştırmaktır. Bu amaçla örnek bir kırıcı binası tasarlanmış ve Türkiye'nin 4 farklı iline (Düzce, Ankara, Kahramanmaraş ve İzmir) göre yapısal analizi yapılmıştır. Analiz sonucunda yapıda oluşabilecek maksimum yer değiştirme, eşdeğer deprem yükü ve kolon kullanım kapasitesi kontrol edilerek karşılaştırılmıştır. Çalışma sonucunda deprem parametrelerindeki artışların yapıyı doğrudan etkilediği sonucuna varılmıştır. Maksimum yer değiştirme ve kullanım kapasitesi Düzce bölgesinden elde edilmiştir.

References

  • [1] E. Ertürk, B. Aykanat, A. C. Altunışık and M. E. Arslan, “Seismic damage assessment based on site observation following the Düzce (Gölyaka) earthquake (Mw = 5.9, November 23, 2022),” Journal of Structural Engineering & Applied Mechanics, vol. 5, no. 4, pp. 197–221, 2022.
  • [2] H. Fan, Q. S. Li, A. Y. Tuan and L. Xu, “Seismic analysis of the world’s tallest building,” Journal of Constructional Steel Research, vol. 65, pp. 1206–1215, 2009.
  • [3] H.-K. Dang, D.-K. Thai and S.-E. Kim, “Stochastic analysis of steel frames considering the material, geometrical and loading uncertainties,” Advances in Engineering Software, vol. 179, 2023, Art. no. 103434.
  • [4] S. Arıbaş, S. Sancıoğlu and S. Çarbaş, “Dışmerkez V çaprazların çelik bir yapı üzerinde incelenmesi,” Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, vol. 1, pp. 79–97, 2019.
  • [5] Z.-S. Liang, L.-H. Han and P. Wang, “Performance and calculation of trussed concrete-filled steel tubular (CFST) hybrid structures subjected to bending,” Engineering Structures, vol. 325, 2025, Art. no. 119478.
  • [6] E.-F. Deng, Y.-H. Wang, J.-D. Gao, X.-Z. Zhang and Z. Zhang, “Numerical study on seismic performance of modular steel structures with FPLC,” Structures, vol. 71, 2025, Art. no. 108076.
  • [7] J. Lu, M. Li, M. Li and Y. Hu, “Experimental study on mechanical behavior and bearing capacity calculation of steel shotcrete composite structure in the primary support of tunnel,” Structures, vol. 71, 2025, Art. no. 107960.
  • [8] Y. Wan et al., “Performance-based sizing optimization method for steel frame structures,” Structures, vol. 71, 2025, Art. no. 107956.
  • [9] S. Sancıoğlu, E. Uray and İ. H. Erkan, “Taguchi metodu ile endüstriyel çelik yapıların tasarım kriterlerinin araştırılması,” in 8. Uluslararası Çelik Yapılar Sempozyumu, Konya, Türkiye, 2019, pp. 440-448.
  • [10] S. A. Güneş and S. Çeribaşı, “Hafif çelik yapı tasarımında yaklaşımlar, mevcut kontrol şartları ve olası bir hafif çelik yapı yönetmeliğinde vurgulanması önerilen konular,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, pp. 362–375, 2018.
  • [11] B. Bayram, S. Sancıoğlu and S. Çarbaş, “Çelik bir yapıda dışmerkez diyagonal çaprazların etkisi,” Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, vol. 1, pp. 128–145, 2019.
  • [12] S. Sezer and M. Hiçyılmaz, “Çelik yapıların kaynaklı birleşimlerinin metasezgisel yöntemlerle optimum tasarımı,” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 24, pp. 277–290, 2021.
  • [13] S. Naimi and Ö. Peker, “Deprem etkileri altındaki farklı tiplerde çelik yapıların stasteel ve sap2000 kullanılarak karşılaştırılması,” Journal of the Institute of Science and Technology, vol. 12, pp. 1577–1591, 2022.
  • [14] S. Savaş and M. Ülker, “AISC 360-10 ve Türk deprem yönetmeliğine göre çelik yapıların tasarımı,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, pp. 21–32, 2018.
  • [15] S. O. Degertekin and H. Tutar, “Optimized seismic design of planar and spatial steel frames using the hybrid learning based jaya algorithm,” Advances in Engineering Software, vol. 171, 2022, Art. no. 103172.
  • [16] M.-H. Ha, Q.-V. Vu and V.-H. Truong, “Optimization of nonlinear inelastic steel frames considering panel zones,” Advances in Engineering Software, vol. 142, 2020, Art. no. 102771.
  • [17] V.-H. Truong, Q.-V. Vu, H.-T. Thai and M.-H. Ha, “A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm,” Advances in Engineering Software, vol. 147, 2020, Art. no. 102825.
  • [18] P. Zakian, “Meta-heuristic design optimization of steel moment resisting frames subjected to natural frequency constraints,” Advances in Engineering Software, vol. 135, 2019, Art. no. 102686.
  • [19] K. K. Wijesundara, R. Nascimbene and G. A. Rassati, “Evaluation of the seismic performance of suspended zipper column concentrically braced steel frames,” Journal of Constructional Steel Research, vol. 150, pp. 452–461, 2018.
  • [20] D. Rodríguez, E. Brunesi and R. Nascimbene, “Fragility and sensitivity analysis of steel frames with bolted-angle connections under progressive collapse,” Engineering Structures, vol. 228, 2021, Art. no. 111508.
  • [21] J.-S. Yang, J.-B. Chen and M. Beer, H. Jensen, “An efficient approach for dynamic-reliability-based topology optimization of braced frame structures with probability density evolution method,” Advances in Engineering Software, vol. 173, 2022, Art. no. 103196.
  • [22] K. K. Wijesundara, R. Nascimbene and G. A. Rassati, “Modeling of different bracing configurations in multi-storey concentrically braced frames using a fiber-beam based approach,” Journal of Constructional Steel Research, vol. 101, pp. 426–436, 2014.
  • [23] H. Krawinkler, “Pushover analysis: why, how, when, and when not to use it,” in Proceedings of the 65th Annual Convention of the Structural Engineers Association of California, 1996, pp. 17–36.
  • [24] S. Salawdeh and J. Goggins, “Performance based design approach for multi-storey concentrically braced steel frames,” Steel and Composite Structures, vol. 20, pp. 749–776, 2016.
  • [25] G. M. Calvi, M. J. N. Priestley and M. J. Kowalsky, Displacement-Based Seismic Design of Structures. New Zealand: IUSS Press, 2007.
  • [26] H. Krawinkler and G. D. P. K. Seneviratna, “Pros and cons of a pushover analysis of seismic performance evaluation,” Engineering Structures, vol. 20, pp. 452–464, 1998.
  • [27] A. Ghobarah, “Performance-based design in earthquake engineering: state of development,” Engineering Structures, vol. 23, pp. 878–884, 2001.
  • [28] R. Hasan, L. Xu and D. E. Grierson, “Push-over analysis for performance-based seismic design,” Computers & Structures, vol. 80, pp. 2483–2493, 2002.
  • [29] M. R. Mirjalili and F. R. Rofooei, “The modified dynamic-based pushover analysis of steel moment resisting frames,” The Structural Design of Tall and Special Buildings, vol. 26, 2017, Art. no. e1378.
  • [30] F. Soleimani Amiri, G. Ghodrati Amiri and H. Razeghi, “Estimation of seismic demands of steel frames subjected to near-fault earthquakes having forward directivity and comparing with pushover analysis results,” The Structural Design of Tall and Special Buildings, vol. 22, pp. 975–988, 2013. doi: 10.1002/tal.747.
  • [31] K. H. Reza and M. Kadir, “Assessment of FEMA356 nonlinear static procedure and modal pushover analysis for seismic evaluation of buildings,” Structural Engineering and Mechanics, vol. 41, pp. 243–262, 2012.
  • [32] A. K. Chopra and R. K. Goel, “A modal pushover analysis procedure for estimating seismic demands for buildings,” Earthquake Engineering & Structural Dynamics, vol. 31, pp. 561–582, 2002.
  • [33] P. H. Gholi, M. Ansari and M. Bayat, “A new lateral load pattern for pushover analysis in structures,” Earthquakes and Structures, vol. 6, pp. 437–455, 2014.
  • [34] Z. Panam and M. Massood, “On the assessment of modal nonlinear pushover analysis for steel frames with semi-rigid connections,” Structural Engineering and Mechanics, vol. 32, pp. 383–398, 2009.
  • [35] AFAD, Earthquake Department of the Disaster and Emergency Management Presidency, Turkey Earthquake Hazard Map. Ankara: Türkiye, 2019. [Online]. Available: https://tdth.afad.gov.tr.
  • [36] Computers and Structures Inc., Structural Analysis and Design Program SAP2000, USA: New York, 2024.
  • [37] Disaster and Emergency Management Presidency, TBEC (2018) Turkey Building Earthquake Code. Türkiye: Ankara, 2018.

Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect

Year 2025, Volume: 13 Issue: 3, 1123 - 1136, 31.07.2025
https://doi.org/10.29130/dubited.1657397

Abstract

Steel structures are frequently used especially in industry and construction of the buildings. Due to its widespread use, many researchers have been studying to investigate the behavior of steel structures. Steel structures used in mining areas are generally used to keep transmission lines and crushers safe. Crushers are vital equipment for mines to continue operating. For this reason, crusher buildings are constructed using steel profiles to protect the crushers. The aim of this study is to investigate the behavior of crusher buildings constructed to protect the crusher under earthquake effects. For this purpose, a sample crusher building was designed and its structural analysis was performed according to 4 different cities of Türkiye (Düzce, Ankara, Kahramanmaraş and İzmir). As a result of the analysis, the maximum displacement, equivalent earthquake load and column usage capacity that may occur in the structure were checked and compared. As a result of the study, it was concluded that increases in earthquake parameters directly affect the structure. The maximum displacements and usage capacity were obtained from the Düzce region.

References

  • [1] E. Ertürk, B. Aykanat, A. C. Altunışık and M. E. Arslan, “Seismic damage assessment based on site observation following the Düzce (Gölyaka) earthquake (Mw = 5.9, November 23, 2022),” Journal of Structural Engineering & Applied Mechanics, vol. 5, no. 4, pp. 197–221, 2022.
  • [2] H. Fan, Q. S. Li, A. Y. Tuan and L. Xu, “Seismic analysis of the world’s tallest building,” Journal of Constructional Steel Research, vol. 65, pp. 1206–1215, 2009.
  • [3] H.-K. Dang, D.-K. Thai and S.-E. Kim, “Stochastic analysis of steel frames considering the material, geometrical and loading uncertainties,” Advances in Engineering Software, vol. 179, 2023, Art. no. 103434.
  • [4] S. Arıbaş, S. Sancıoğlu and S. Çarbaş, “Dışmerkez V çaprazların çelik bir yapı üzerinde incelenmesi,” Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, vol. 1, pp. 79–97, 2019.
  • [5] Z.-S. Liang, L.-H. Han and P. Wang, “Performance and calculation of trussed concrete-filled steel tubular (CFST) hybrid structures subjected to bending,” Engineering Structures, vol. 325, 2025, Art. no. 119478.
  • [6] E.-F. Deng, Y.-H. Wang, J.-D. Gao, X.-Z. Zhang and Z. Zhang, “Numerical study on seismic performance of modular steel structures with FPLC,” Structures, vol. 71, 2025, Art. no. 108076.
  • [7] J. Lu, M. Li, M. Li and Y. Hu, “Experimental study on mechanical behavior and bearing capacity calculation of steel shotcrete composite structure in the primary support of tunnel,” Structures, vol. 71, 2025, Art. no. 107960.
  • [8] Y. Wan et al., “Performance-based sizing optimization method for steel frame structures,” Structures, vol. 71, 2025, Art. no. 107956.
  • [9] S. Sancıoğlu, E. Uray and İ. H. Erkan, “Taguchi metodu ile endüstriyel çelik yapıların tasarım kriterlerinin araştırılması,” in 8. Uluslararası Çelik Yapılar Sempozyumu, Konya, Türkiye, 2019, pp. 440-448.
  • [10] S. A. Güneş and S. Çeribaşı, “Hafif çelik yapı tasarımında yaklaşımlar, mevcut kontrol şartları ve olası bir hafif çelik yapı yönetmeliğinde vurgulanması önerilen konular,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, pp. 362–375, 2018.
  • [11] B. Bayram, S. Sancıoğlu and S. Çarbaş, “Çelik bir yapıda dışmerkez diyagonal çaprazların etkisi,” Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, vol. 1, pp. 128–145, 2019.
  • [12] S. Sezer and M. Hiçyılmaz, “Çelik yapıların kaynaklı birleşimlerinin metasezgisel yöntemlerle optimum tasarımı,” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 24, pp. 277–290, 2021.
  • [13] S. Naimi and Ö. Peker, “Deprem etkileri altındaki farklı tiplerde çelik yapıların stasteel ve sap2000 kullanılarak karşılaştırılması,” Journal of the Institute of Science and Technology, vol. 12, pp. 1577–1591, 2022.
  • [14] S. Savaş and M. Ülker, “AISC 360-10 ve Türk deprem yönetmeliğine göre çelik yapıların tasarımı,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, pp. 21–32, 2018.
  • [15] S. O. Degertekin and H. Tutar, “Optimized seismic design of planar and spatial steel frames using the hybrid learning based jaya algorithm,” Advances in Engineering Software, vol. 171, 2022, Art. no. 103172.
  • [16] M.-H. Ha, Q.-V. Vu and V.-H. Truong, “Optimization of nonlinear inelastic steel frames considering panel zones,” Advances in Engineering Software, vol. 142, 2020, Art. no. 102771.
  • [17] V.-H. Truong, Q.-V. Vu, H.-T. Thai and M.-H. Ha, “A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm,” Advances in Engineering Software, vol. 147, 2020, Art. no. 102825.
  • [18] P. Zakian, “Meta-heuristic design optimization of steel moment resisting frames subjected to natural frequency constraints,” Advances in Engineering Software, vol. 135, 2019, Art. no. 102686.
  • [19] K. K. Wijesundara, R. Nascimbene and G. A. Rassati, “Evaluation of the seismic performance of suspended zipper column concentrically braced steel frames,” Journal of Constructional Steel Research, vol. 150, pp. 452–461, 2018.
  • [20] D. Rodríguez, E. Brunesi and R. Nascimbene, “Fragility and sensitivity analysis of steel frames with bolted-angle connections under progressive collapse,” Engineering Structures, vol. 228, 2021, Art. no. 111508.
  • [21] J.-S. Yang, J.-B. Chen and M. Beer, H. Jensen, “An efficient approach for dynamic-reliability-based topology optimization of braced frame structures with probability density evolution method,” Advances in Engineering Software, vol. 173, 2022, Art. no. 103196.
  • [22] K. K. Wijesundara, R. Nascimbene and G. A. Rassati, “Modeling of different bracing configurations in multi-storey concentrically braced frames using a fiber-beam based approach,” Journal of Constructional Steel Research, vol. 101, pp. 426–436, 2014.
  • [23] H. Krawinkler, “Pushover analysis: why, how, when, and when not to use it,” in Proceedings of the 65th Annual Convention of the Structural Engineers Association of California, 1996, pp. 17–36.
  • [24] S. Salawdeh and J. Goggins, “Performance based design approach for multi-storey concentrically braced steel frames,” Steel and Composite Structures, vol. 20, pp. 749–776, 2016.
  • [25] G. M. Calvi, M. J. N. Priestley and M. J. Kowalsky, Displacement-Based Seismic Design of Structures. New Zealand: IUSS Press, 2007.
  • [26] H. Krawinkler and G. D. P. K. Seneviratna, “Pros and cons of a pushover analysis of seismic performance evaluation,” Engineering Structures, vol. 20, pp. 452–464, 1998.
  • [27] A. Ghobarah, “Performance-based design in earthquake engineering: state of development,” Engineering Structures, vol. 23, pp. 878–884, 2001.
  • [28] R. Hasan, L. Xu and D. E. Grierson, “Push-over analysis for performance-based seismic design,” Computers & Structures, vol. 80, pp. 2483–2493, 2002.
  • [29] M. R. Mirjalili and F. R. Rofooei, “The modified dynamic-based pushover analysis of steel moment resisting frames,” The Structural Design of Tall and Special Buildings, vol. 26, 2017, Art. no. e1378.
  • [30] F. Soleimani Amiri, G. Ghodrati Amiri and H. Razeghi, “Estimation of seismic demands of steel frames subjected to near-fault earthquakes having forward directivity and comparing with pushover analysis results,” The Structural Design of Tall and Special Buildings, vol. 22, pp. 975–988, 2013. doi: 10.1002/tal.747.
  • [31] K. H. Reza and M. Kadir, “Assessment of FEMA356 nonlinear static procedure and modal pushover analysis for seismic evaluation of buildings,” Structural Engineering and Mechanics, vol. 41, pp. 243–262, 2012.
  • [32] A. K. Chopra and R. K. Goel, “A modal pushover analysis procedure for estimating seismic demands for buildings,” Earthquake Engineering & Structural Dynamics, vol. 31, pp. 561–582, 2002.
  • [33] P. H. Gholi, M. Ansari and M. Bayat, “A new lateral load pattern for pushover analysis in structures,” Earthquakes and Structures, vol. 6, pp. 437–455, 2014.
  • [34] Z. Panam and M. Massood, “On the assessment of modal nonlinear pushover analysis for steel frames with semi-rigid connections,” Structural Engineering and Mechanics, vol. 32, pp. 383–398, 2009.
  • [35] AFAD, Earthquake Department of the Disaster and Emergency Management Presidency, Turkey Earthquake Hazard Map. Ankara: Türkiye, 2019. [Online]. Available: https://tdth.afad.gov.tr.
  • [36] Computers and Structures Inc., Structural Analysis and Design Program SAP2000, USA: New York, 2024.
  • [37] Disaster and Emergency Management Presidency, TBEC (2018) Turkey Building Earthquake Code. Türkiye: Ankara, 2018.
There are 37 citations in total.

Details

Primary Language English
Subjects Steel Structures
Journal Section Articles
Authors

Batuhan Aykanat 0000-0003-3797-3773

Publication Date July 31, 2025
Submission Date March 13, 2025
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Aykanat, B. (2025). Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect. Duzce University Journal of Science and Technology, 13(3), 1123-1136. https://doi.org/10.29130/dubited.1657397
AMA Aykanat B. Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect. DUBİTED. July 2025;13(3):1123-1136. doi:10.29130/dubited.1657397
Chicago Aykanat, Batuhan. “Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect”. Duzce University Journal of Science and Technology 13, no. 3 (July 2025): 1123-36. https://doi.org/10.29130/dubited.1657397.
EndNote Aykanat B (July 1, 2025) Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect. Duzce University Journal of Science and Technology 13 3 1123–1136.
IEEE B. Aykanat, “Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect”, DUBİTED, vol. 13, no. 3, pp. 1123–1136, 2025, doi: 10.29130/dubited.1657397.
ISNAD Aykanat, Batuhan. “Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect”. Duzce University Journal of Science and Technology 13/3 (July2025), 1123-1136. https://doi.org/10.29130/dubited.1657397.
JAMA Aykanat B. Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect. DUBİTED. 2025;13:1123–1136.
MLA Aykanat, Batuhan. “Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect”. Duzce University Journal of Science and Technology, vol. 13, no. 3, 2025, pp. 1123-36, doi:10.29130/dubited.1657397.
Vancouver Aykanat B. Numerical Investigation of the Behavior of Crusher Buildings Under Earthquake Effect. DUBİTED. 2025;13(3):1123-36.