Research Article
BibTex RIS Cite

Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators

Year 2025, Volume: 11 Issue: 1-2, 32 - 38, 29.12.2025

Abstract

Hermite-Hadamard type inequalities play a central role in the study of convexity and its generalizations, providing a fundamental tool for both theoretical analysis and applications. In recent years, fractional integral operators have been widely employed to establish new versions of these inequalities. Among them, the $\psi$-Hilfer-Atangana-Baleanu ($\psi$-HAB) fractional integral operators have attracted attention as a powerful extension of the Atangana-Baleanu and ABK operators, offering a flexible framework to explore generalized convexity classes.

In this paper, with the help of the identities proved by Kermausor et al. in \cite{Kermausuor2025}, we obtain some new integral inequalities of Hermite-Hadamard type for the quasi-convex function and the $P$-function, respectively.

References

  • AKDEMİR, A.O., KARAOĞLAN, A., RAGUSA, M.A., SET, E. (2021). Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions, J. Funct. Spaces, 2021(1), Article ID 1055434, 1–10.
  • ATANGANA, A., BALEANU, D. (2016). New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20(2), 763–769.
  • AVCI-ARDIÇ, M., AKDEMİR, A.O., KAVURMACI, H. (2023). Integral inequalities for differentiable s-convex functions in the second sense via Atangana-Baleanu fractional integral operators, Filomat, 37(18), 6229–6244.
  • AZZOUZ, N., BENAISSA, B., BUDAK, H., DEMİR, İ. (2025). Hermite-Hadamard-Mercer type inequalities for fractional integrals: A study with h-convexity and ψ-Hilfer operators, Bound Value Probl., 2025, Article number 14.
  • BUDAK, H., ALI, M.A., KASHURI, A. (2022). New inequalities of Hermite-Hadamard type for twice differentiable functions via generalized fractional integrals, Turkish J. Ineq., 6(2), 27–39.
  • BUTT, S.I., KHAN, D., JAIN, S., OROS, G.I., AGARWAL, P., MOMANI, S. (2025). Fractional integral inequalities for Superquadratic functions via Atangana Baleanu’s operator with applications, Fractals, 33(8), 1–24.
  • COŞKUN, M., YILDIZ, Ç., COTIRLA, L.-I. (2024). Novel Estimations of Hadamard-Type Integral Inequalities for Raina’s Fractional Operators, Fractal and Fractional, 8(5), 302.
  • ÇELİK, B., ÖZDEMİR, M.E., AKDEMİR, A.O., SET, E. (2021). Integral Inequalities for some convexity classes via Atangana-Baleanu Integral Operators, Turkish J. Ineq., 5(2), 82–92.
  • HEZENCİ, F., KARA, H., BUDAK, H. (2023). Conformable fractional versions of Hermite-Hadamard-type inequalities for twice-differentiable functions, Bound. Value Probl., 2023(1), Article ID 48.
  • ION, D.A. (2007). Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34, 82–87.
  • KERMAUSUOR, S., DENU, D., Olanipekun, P.O. (2026). ψ-Hilfer-Atangana-Baleanu fractional integral operators and some fractional integral inequalities, Kragujevac J. Math., 50(10), 1585–1604.
  • KILBAS, A.A., SRIVASTAVA, H.M., TRUJILLO, J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
  • MUNIR, A., KASHURI, A., HEZENCI, F., KARA, H. (2025). Novelty Hermite-Hadamard-type inequalities for various convexity functions and their applications, Sahand Commun. Math. Anal., 2(4), 213–239.
  • PACHPATTE, B.G. (2005). Mathematical Inequalities, Elsevier, Amsterdam.
  • PEARCE, C.E.M., RUBINOV, A.M. (1999). P-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl., 240(1), 92–104.
  • PECARIC, J., PROSCHAN, F., TONG, Y.L. (1992). Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston.
  • SARIKAYA, M.Z., SET, E., YALDIZ, H., BAŞAK, N. (2013). Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57, 2403–2407.
  • SET, E., ÇELİK, B. (2018). Generalized fractional Hermite-Hadamard type inequalities for convex and convex functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67(1), 333–344.
  • SET E., CHOI, J., ÇELİK, B. (2018). New Hermite-Hadamard type inequalities for product of different convex functions involving certain fractional integral operators, J. Math. Comp. Sci., 18(1), 29–36.
  • XI, B.-Y., BAI, R.F., QI, F. (2012). Hermite-Hadamard type inequalities for the m- and (α,m)-geometrically convex functions, Aequationes Math., 84(3), 261–269.
  • YALÇIN, A., GÜL, E., AKDEMİR, A.O. (2025). Hermite-Hadamard type inequalities for Co-ordinated convex functions with variable-order fractional integrals, Appl. Comput. Math., 24(2), 326–343.
There are 21 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Barış Çelik

Erhan Set

Submission Date October 20, 2025
Acceptance Date December 25, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1-2

Cite

APA Çelik, B., & Set, E. (2025). Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators. Eastern Anatolian Journal of Science, 11(1-2), 32-38.
AMA Çelik B, Set E. Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators. Eastern Anatolian Journal of Science. December 2025;11(1-2):32-38.
Chicago Çelik, Barış, and Erhan Set. “Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators”. Eastern Anatolian Journal of Science 11, no. 1-2 (December 2025): 32-38.
EndNote Çelik B, Set E (December 1, 2025) Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators. Eastern Anatolian Journal of Science 11 1-2 32–38.
IEEE B. Çelik and E. Set, “Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators”, Eastern Anatolian Journal of Science, vol. 11, no. 1-2, pp. 32–38, 2025.
ISNAD Çelik, Barış - Set, Erhan. “Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators”. Eastern Anatolian Journal of Science 11/1-2 (December2025), 32-38.
JAMA Çelik B, Set E. Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators. Eastern Anatolian Journal of Science. 2025;11:32–38.
MLA Çelik, Barış and Erhan Set. “Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators”. Eastern Anatolian Journal of Science, vol. 11, no. 1-2, 2025, pp. 32-38.
Vancouver Çelik B, Set E. Fractional Hermite-Hadamard Inequalities for Different Convex Classes Based on $\psi$-Hilfer-Atangana-Baleanu Operators. Eastern Anatolian Journal of Science. 2025;11(1-2):32-8.