Research Article
BibTex RIS Cite

Conformal bi-slant Riemannian maps

Year 2022, Volume: 8 Issue: 1, 1 - 8, 30.06.2022

Abstract

In this study, conformal bi-slant Riemannian maps from an almost Hermitian manifold to a Riemannian manifold are defined. Integrability conditions of certain distributions on total manifolds are examined. Also, we studied that under which conditions, the distributions can define a totally geodesic foliation.

References

  • AYKURT SEPET, S. (2020). Pointwise bi-slant submersions. Celal Bayar University Journal of Science, 16(3), 339-343.
  • AYKURT SEPET, S. (2021). Conformal bi-slant submersions. Turkish Journal of Mathematics, 45, 1705-1723.
  • BAIRD, P., WOOD, J.C. (2003). Harmonic Morphisms between Riemannian manifolds, Oxford University Press.
  • FALCITELLI, M., IANUS S., PASTORE, A.M. (2004). Rimannian Submersions and Related Topics, World Scientific.
  • FISCHER, A.E. (1992). Riemannian maps between Riemannian manifolds. Contemporary Mathematics, 132, 331-366.
  • GRAY, A. (1967). Pseudo-Riemannian almost product manifolds and submersions. Journal of Mathematics and Mechanics, 16(7), 715-737.
  • NORE, T. (1986). Second fundamental form of a map. Annali di Matematica Pura ed Applicata, 146, 281-310.
  • O’NEILL, B., (1966). The fundamental equations of a submersion. Michigan Mathematical Journal, 13, 458-469.
  • ŞAHİN, B. (2010). Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems. Acta Applicandae Mathematicae, 109(3), 829-847.
  • ŞAHİN, B. (2017). Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications, Academic Press, Elsevier.
  • ŞAHİN, B., YANAN, Ş. (2018). Conformal Riemannian maps from almost Hermitian manifolds. Turkish Journal of Mathematics, 42(5), 2436-2451.
  • ŞAHİN, B., YANAN, Ş. (2019). Conformal semi-invariant Riemannian maps from almost Hermitian manifolds. Filomat, 33(4), 1125-1134.
  • WATSON, B. (1976). Almost Hermitian submersions. Journal of Differential Geometry, 11(1), 147-165.
  • YANAN, Ş. (2021). Conformal generic Riemannian maps from almost Hermitian manifolds. Turkish Journal of Science, 6(2), 76-88.
  • YANAN, Ş. (2022a). Conformal hemi-slant Riemannian maps. Fundamentals of Contemporary Mathematical Sciences, 3(1), 57-74.
  • YANAN, Ş. (2022b). Conformal semi-slant Riemannian maps from almost Hermitian manifolds onto Riemannian manifolds. Filomat, 35(6).
  • YANAN, Ş., ŞAHİN, B. (2022c). Conformal slant Riemannian maps. International Journal of Maps in Mathematics, accepted.
  • YANO, K., KON, M. (1984). Structures on manifolds, World Scientific.
Year 2022, Volume: 8 Issue: 1, 1 - 8, 30.06.2022

Abstract

References

  • AYKURT SEPET, S. (2020). Pointwise bi-slant submersions. Celal Bayar University Journal of Science, 16(3), 339-343.
  • AYKURT SEPET, S. (2021). Conformal bi-slant submersions. Turkish Journal of Mathematics, 45, 1705-1723.
  • BAIRD, P., WOOD, J.C. (2003). Harmonic Morphisms between Riemannian manifolds, Oxford University Press.
  • FALCITELLI, M., IANUS S., PASTORE, A.M. (2004). Rimannian Submersions and Related Topics, World Scientific.
  • FISCHER, A.E. (1992). Riemannian maps between Riemannian manifolds. Contemporary Mathematics, 132, 331-366.
  • GRAY, A. (1967). Pseudo-Riemannian almost product manifolds and submersions. Journal of Mathematics and Mechanics, 16(7), 715-737.
  • NORE, T. (1986). Second fundamental form of a map. Annali di Matematica Pura ed Applicata, 146, 281-310.
  • O’NEILL, B., (1966). The fundamental equations of a submersion. Michigan Mathematical Journal, 13, 458-469.
  • ŞAHİN, B. (2010). Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems. Acta Applicandae Mathematicae, 109(3), 829-847.
  • ŞAHİN, B. (2017). Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications, Academic Press, Elsevier.
  • ŞAHİN, B., YANAN, Ş. (2018). Conformal Riemannian maps from almost Hermitian manifolds. Turkish Journal of Mathematics, 42(5), 2436-2451.
  • ŞAHİN, B., YANAN, Ş. (2019). Conformal semi-invariant Riemannian maps from almost Hermitian manifolds. Filomat, 33(4), 1125-1134.
  • WATSON, B. (1976). Almost Hermitian submersions. Journal of Differential Geometry, 11(1), 147-165.
  • YANAN, Ş. (2021). Conformal generic Riemannian maps from almost Hermitian manifolds. Turkish Journal of Science, 6(2), 76-88.
  • YANAN, Ş. (2022a). Conformal hemi-slant Riemannian maps. Fundamentals of Contemporary Mathematical Sciences, 3(1), 57-74.
  • YANAN, Ş. (2022b). Conformal semi-slant Riemannian maps from almost Hermitian manifolds onto Riemannian manifolds. Filomat, 35(6).
  • YANAN, Ş., ŞAHİN, B. (2022c). Conformal slant Riemannian maps. International Journal of Maps in Mathematics, accepted.
  • YANO, K., KON, M. (1984). Structures on manifolds, World Scientific.
There are 18 citations in total.

Details

Primary Language English
Journal Section makaleler
Authors

Şener Yanan 0000-0003-1600-6522

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

APA Yanan, Ş. (2022). Conformal bi-slant Riemannian maps. Eastern Anatolian Journal of Science, 8(1), 1-8.
AMA Yanan Ş. Conformal bi-slant Riemannian maps. Eastern Anatolian Journal of Science. June 2022;8(1):1-8.
Chicago Yanan, Şener. “Conformal Bi-Slant Riemannian Maps”. Eastern Anatolian Journal of Science 8, no. 1 (June 2022): 1-8.
EndNote Yanan Ş (June 1, 2022) Conformal bi-slant Riemannian maps. Eastern Anatolian Journal of Science 8 1 1–8.
IEEE Ş. Yanan, “Conformal bi-slant Riemannian maps”, Eastern Anatolian Journal of Science, vol. 8, no. 1, pp. 1–8, 2022.
ISNAD Yanan, Şener. “Conformal Bi-Slant Riemannian Maps”. Eastern Anatolian Journal of Science 8/1 (June 2022), 1-8.
JAMA Yanan Ş. Conformal bi-slant Riemannian maps. Eastern Anatolian Journal of Science. 2022;8:1–8.
MLA Yanan, Şener. “Conformal Bi-Slant Riemannian Maps”. Eastern Anatolian Journal of Science, vol. 8, no. 1, 2022, pp. 1-8.
Vancouver Yanan Ş. Conformal bi-slant Riemannian maps. Eastern Anatolian Journal of Science. 2022;8(1):1-8.