Research Article
BibTex RIS Cite

TÜRK VE FRANSIZ DERS KİTAPLARINDAKİ KESİRLERİN SAYI DOĞRUSU/ DOĞRU PARÇASI TEMSİLİ

Year 2024, , 30 - 44, 30.03.2024
https://doi.org/10.33418/education.1421954

Abstract

Ders kitapları özellikle matematik gibi soyut olan dersler için önemli bir ders materyalidir. Ders kitaplarında matematiksel kavramların anlaşılabilmesi ve bu kavramlara dair matematiksel becerilerin kullanılabilmesi için çoklu temsillerin yer alması önemlidir. Ders kitaplarının bir diğer önemi ise ait olduğu ülkenin eğitim sisteminde dair birçok ögeyi içerisinde barındırabilmesidir. Bu araştırmada Fransız ve Türk ders kitapları birçok farklı temsile sahip olan kesirler kavramının sayı doğrusu/doğru parçası temsili kapsamında incelenmiştir. Bu doğrultuda 6. sınıf düzeyinde olmak üzere, 3 Fransız ve 3 Türk matematik ders kitabı araştırmaya dâhil edilmiştir. Araştırmada doküman analizi yöntemi kullanılmıştır. Elde edilen verilere göre Fransız ders kitaplarında Türk ders kitaplarına göre sayı doğrusu/doğru parçası temsiline çok daha fazla yer verilmektedir. Ders kitaplarında bu temsille ilgili farklı görevler öğrencilerden beklenmektedir. Bir kesrin sayı doğrusu üzerindeki aralığını belirleme görevi ise Fransızlara özgü bir görev olarak belirlenmiştir. Bu araştırmanın sonucunda Türk ders kitabı yazarlarına sayı doğrusu/doğru parçası temsiline daha fazla yer vermeleri ve bir kesrin aralığını belirleme görevini ders kitaplarında kullanmaları önerilebilir.

References

  • Akkoç, H. (2005). Fonksiyon kavramının anlaşılması: Çoklu temsiller ve tanımsal özellikleri. Eğitim Araştırmaları Dergisi, (20), 14–24.
  • Andrews, P. and Hatch, G. (2000). A comparison of Hungarian and English teachers´ conceptions of mathematics and its teaching. Educational Studies in Mathematics, (43), 31– 64. DOI:10.1023/A:1017575231667
  • Baştürk, S. (2003). Enseignement des mathématiques en Turquie: Le cas des fonctions au lycée et au concours d’entrée à l’université. Paris: IREM de Paris 7.
  • Baştürk, S. (2007). Fonksiyon kavramının öğretiminin 9. sınıf ders kitapları bağlamında incelenmesi. Sakarya Üniversitesi Fen Edebiyat Dergisi, 9(Ek Sayı), 270–283.
  • Baştürk, S. (2010). Öğrencilerinin fonksiyon kavramının farklı temsillerindeki matematik dersi performansları. Gazi Eğitim Fakültesi Dergisi, 30(2), 465–482.
  • Baştürk, S. (2012). Sınıf öğretmenlerinin ders kitabı kavram imajlarının incelenmesi. Turkish Journal Of Education, 2(1), 57–65. doi:10.19128/turje.48236 doi.org/10.19128/turje.181055
  • Bossé, M. J., Adu-Gyamfi, K. and Cheetham, M. (2011). Translations among mathematical representations: Teacher beliefs and practices. International Journal of Mathematics Teaching and Learning, 15(6), 1–23. ISSN-1473-0111
  • Clarke, D. M., Roche, A. and Mitchell, A. (2008). Ten practical tips for making fractions come alive and make sense. Mathematics Teaching in the Middle School, 13(7), 372–380. ISSN-1072-0839
  • Cramer, K. and Henry, A. (2002). Using manipulative models to build number sense for addition of fractions. B. Litwiller and G. Bright (Eds.), IMaking sense of fractions, ratios, and proportions in (pp. 41–48). Reston, VA: National Council of Teachers of Mathematics. DOI: 10.4236/ce.2010.12018
  • Cramer, K. and Whitney, S. (2010). Learning rational number concepts and skills in elementary school classrooms. D. V Lambdin and F. K. J. Lester (Eds.), Teaching and learning mathematics: Translating research for elementary school teachers in (pp. 15–22).
  • Çelik, B. ve Çiltaş, A. (2015). Beşinci sınıf kesirler konusunun öğretim sürecinin matematiksel modeller açısından incelenmesi. Bayburt Eğitim Fakültesi Dergisi, 10(1), 180-204.
  • Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches En Didactique Des Mathématiques, 7(2), 5–31. https://revue-rdm.com/1986/jeux-de-cadres-et-dialectique/
  • Driscoll, M. (1999). Fostering algebraic thinking: A guide for teachers grades 6-10. Portsmouth, NH: Heinemann. ISBN10 0325001545
  • Duval, R. (1993). Registres de représentations sémiotiques et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, (5), 37–65.
  • Edwards, L. D. (1998). Embodying mathematics and science: Microworld as representations. The Journal of Mathematical Behavior, 17(1), 53–78. ISSN 0364-0213
  • Goldin, G. A. and Janvier, C. (1998). Representations and the psychology of mathematics education. Journal of Mathematical Behavior, 17(1), 1–4.
  • Goldin, G. A. and Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. A. A. Cuoco and F. R. Curcio (Eds.), The roles ofrepresentation in school mathematics in (pp. 1–23). Reston, VA: NCTM.
  • Gueudet, G., Bueno-Ravel, L., Modeste, S., & Trouche, L. (2017). Curriculum in France: A national frame in transition. In D. Thompson, M. A. Huntley, & C. Suurtamm (Eds.), International perspectives on mathematics curriculum (pp. 41-70). International Age Publishing.
  • Hilbert, J. and Carpenter, T. P. (1992). Learning and teaching with understanding. D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning in (pp. 65–97). New York: Macmillan Publishing Company.
  • Kaput, J. (1989). Linking representations in the symbol systems of algebra. Hillsdale, NJ: Lawrence Erlbaum Associates. ISBN9781315044378
  • Karakaş, İ. (2004). Fonksiyon kavramının farklı öğrenim düzeyinde olan öğrencilerdeki gelişimi. Eğitim Araştırmaları Dergisi, 4(16), 64–73. ISSN: 1302-597X / 2528-8911
  • Keller, B. A. and Hirsch, C. R. (1998). Student preferences for representations of functions. International Journal in Mathematics Education ScienceTechnology, 29(1), 1–17. doi.org/10.1080/0020739980290101
  • Khakpour, A. (2013). Methodology of comparative studies in education. Contemporary Educational Researches Journal, 2(1), 20–26.
  • Kieren, T. E. (1993). The learning offractions: maturing in a fraction. Paper presented at the conference fraction learning and instruction, GA, Athens.
  • Kilpatrick, J., Swafford, J. and Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
  • Kubow, P. and Fossum, P. R. (2007). Comparative Education: Exploring Issues. Inter-national Context in . New Jersey: Pearson Merril/Prentice Hall. DOI 61229639
  • Kula, S. (2011). Matematik öğretmen adaylarının dörtlü bilgi modeli ile alan ve alan öğretimi bilgilerinin incelenmesi: Limit örneği. Yayınlanmamış Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü, İzmir.
  • Lee, M. Y. (2017). Pre-service teachers’ flexibility with referent units in solving a fraction division problem. Educational Studies in Mathematics, 96(3), 327–348. https://doi.org/10.1007/s10649-017-9771-6 from retrieved. DOI:10.29333/ejmste/103055
  • Lesh, R. and Doerr, H. M. (2003). Foundations of models and modelling perspective on mathematics teaching, learning, and problem solving. R. Lesh and H. M. Doerr (Eds.), Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning, and teaching in (pp. 3–33). Mahwah: Laurence Erlbaum.
  • Lester, J. and Cheek, E. (1998). The real experts address textbook issues. Journal of Adolescent & Adult Literacy, (41), 282–291.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Novillis-Larson, C. (1980). Locating proper fractions. School Science and Mathematics, 53(5), 423–428. https://doi.org/10.1111/j.1949-8594.1980.tb09687
  • Özer, T. ve İncikabı, L. (2019). İlkokul matematik ders kitaplarındaki kesirlere ilişkin soruların bazı değişkenler açısından incelenmesi. Medeniyet Eğitim Araştırmaları Dergisi, 3(1), 20-37.
  • Pepin, B. and Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms. Zentrablatt fur Didaktik der Mathematik, (33), 158–175. DOI https://doi.org/10.1007/BF02656616
  • Pesen, C. (2008). Kesirlerin sayı doğrusu üzerindeki gösteriminde öğrencilerin öğrenme güçlükleri ve kavram yanılgıları. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 9 (15), 157-168.
  • Porzio, D. T. (1999). Effects of differing emphases on the use of multiple representations and technology on students’ understanding of calculus concepts. Focus on Learning Problems in Mathematics, 21(3), 1–29. ISSN-0272-8893
  • Rickard, A. (1996). Connections and confusion: Teaching perimeter and area with a problem-solving oriented unit. Journal of Mathematical Behavior, 15(3), 303–327. https://doi.org/10.1016/S0732-3123(96)90008-5
  • Schmidt, W., McKnight, C. and Raizen, S. (1997). A Splintered vision: An investigation of U.S. science and mathematics education. The Netherlands: Kluwer Academic Publishers. ISBN-10: 0792344405
  • Seyidoğlu, H. (2016). Bilimsel araştırma ve yazma el kitabı. Güzem Can Yayınları.
  • Sharp, A. (1999). Aspects of English medium textbook use in Hong Kong. New Horizons in Education, (40), 93–102.
  • Sheldon, L. E. (1988). Evaluating ELT textbooks and materials. ELT Journal, (42), 237–246. https://doi.org/10.1093/elt/42.4.237
  • Siebert, D. and Gaskin, N. (2006). Creating, naming, and justifying fractions. Teaching Children Mathematics, 12(8), 394–400. DOI: 10.4236/ce.2013.49B014
  • Siegler, R., Carpenter, T., Fennel, F., Geary, D., Lewis, J. and Okamoto, L. (2010). Developing effective fractions instruction for kindergarten through 8th grade: A practice guide. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from whatworks.ed.gov/publications/ practiceguides.
  • Sierpinska, A. (1992). On understanding the notion of function. G. Harel and E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy in (pp. 25–58). Washington, DC: Mathematical Association of America Simon.
  • Stewart, J. B., Redlin, L. and Watson, S. (2008). College algebra (5th ed.). Belmont, CA: Brooks Cole. ISBN-10: 9780534373528
  • Tall, D. and Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169. DOI:10.1007/BF00305619
  • Temur, Ö. D. (2011). Dördüncü ve beşinci sınıf öğretmenlerinin kesir öğretimine ilişkin görüşleri: Fenomenografik araştırma. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 29, 203-212.
  • Teters, P. and Gabel, D. (1984). 1982-83 Results of the NSTA survey of the needs of elementary teachers regarding their teaching of science. Washington: National Science Teachers Association.
  • Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. Research in collegiate mathematics education, (1), 21–44.
  • Tunç-Pekkan, Z. (2015). An analysis of elementary school children’s fractional knowledge depicted with circle, rectangle, and number line representations. Educational Studies in Mathematics, 89(3), 419–441. doi:10.1007/s10649-015-9606-2 ISSN-0013-1954
  • Usiskin, Z. P. (2007). Some thoughts about fractions. Mathematics Teaching in the Middle school, 12(7), 370–373. DOI:10.26822/iejee.2018541308
  • Van de Walle, J. A., Karp, K. S. and Williams, J. M. B. (2010). Elementary and middle school mathematics. Teaching development (7th ed.). Boston: Pearson. ISBN: 9780133560367, 0133560368
  • Watanabe, T. (2002). Representations in teaching and learning fractions. Teaching Children Mathematics, 8(8), 457–464. DOI: https://doi.org/10.5951/TCM.8.8.0457 Yıldırım, A., ve Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Yıldırım, A. ve Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research methods in the social sciences] (11th ed.). Ankara: Seçkin Yayınevi.
  • Zembat, İ. Ö. (2004). Conceptual development of prospective elementary teachers: The case of division of fractions. Doctoral dissertation, The Pennsylvania State University. ProQuest Digital Dissertations Database.
Year 2024, , 30 - 44, 30.03.2024
https://doi.org/10.33418/education.1421954

Abstract

References

  • Akkoç, H. (2005). Fonksiyon kavramının anlaşılması: Çoklu temsiller ve tanımsal özellikleri. Eğitim Araştırmaları Dergisi, (20), 14–24.
  • Andrews, P. and Hatch, G. (2000). A comparison of Hungarian and English teachers´ conceptions of mathematics and its teaching. Educational Studies in Mathematics, (43), 31– 64. DOI:10.1023/A:1017575231667
  • Baştürk, S. (2003). Enseignement des mathématiques en Turquie: Le cas des fonctions au lycée et au concours d’entrée à l’université. Paris: IREM de Paris 7.
  • Baştürk, S. (2007). Fonksiyon kavramının öğretiminin 9. sınıf ders kitapları bağlamında incelenmesi. Sakarya Üniversitesi Fen Edebiyat Dergisi, 9(Ek Sayı), 270–283.
  • Baştürk, S. (2010). Öğrencilerinin fonksiyon kavramının farklı temsillerindeki matematik dersi performansları. Gazi Eğitim Fakültesi Dergisi, 30(2), 465–482.
  • Baştürk, S. (2012). Sınıf öğretmenlerinin ders kitabı kavram imajlarının incelenmesi. Turkish Journal Of Education, 2(1), 57–65. doi:10.19128/turje.48236 doi.org/10.19128/turje.181055
  • Bossé, M. J., Adu-Gyamfi, K. and Cheetham, M. (2011). Translations among mathematical representations: Teacher beliefs and practices. International Journal of Mathematics Teaching and Learning, 15(6), 1–23. ISSN-1473-0111
  • Clarke, D. M., Roche, A. and Mitchell, A. (2008). Ten practical tips for making fractions come alive and make sense. Mathematics Teaching in the Middle School, 13(7), 372–380. ISSN-1072-0839
  • Cramer, K. and Henry, A. (2002). Using manipulative models to build number sense for addition of fractions. B. Litwiller and G. Bright (Eds.), IMaking sense of fractions, ratios, and proportions in (pp. 41–48). Reston, VA: National Council of Teachers of Mathematics. DOI: 10.4236/ce.2010.12018
  • Cramer, K. and Whitney, S. (2010). Learning rational number concepts and skills in elementary school classrooms. D. V Lambdin and F. K. J. Lester (Eds.), Teaching and learning mathematics: Translating research for elementary school teachers in (pp. 15–22).
  • Çelik, B. ve Çiltaş, A. (2015). Beşinci sınıf kesirler konusunun öğretim sürecinin matematiksel modeller açısından incelenmesi. Bayburt Eğitim Fakültesi Dergisi, 10(1), 180-204.
  • Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches En Didactique Des Mathématiques, 7(2), 5–31. https://revue-rdm.com/1986/jeux-de-cadres-et-dialectique/
  • Driscoll, M. (1999). Fostering algebraic thinking: A guide for teachers grades 6-10. Portsmouth, NH: Heinemann. ISBN10 0325001545
  • Duval, R. (1993). Registres de représentations sémiotiques et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, (5), 37–65.
  • Edwards, L. D. (1998). Embodying mathematics and science: Microworld as representations. The Journal of Mathematical Behavior, 17(1), 53–78. ISSN 0364-0213
  • Goldin, G. A. and Janvier, C. (1998). Representations and the psychology of mathematics education. Journal of Mathematical Behavior, 17(1), 1–4.
  • Goldin, G. A. and Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. A. A. Cuoco and F. R. Curcio (Eds.), The roles ofrepresentation in school mathematics in (pp. 1–23). Reston, VA: NCTM.
  • Gueudet, G., Bueno-Ravel, L., Modeste, S., & Trouche, L. (2017). Curriculum in France: A national frame in transition. In D. Thompson, M. A. Huntley, & C. Suurtamm (Eds.), International perspectives on mathematics curriculum (pp. 41-70). International Age Publishing.
  • Hilbert, J. and Carpenter, T. P. (1992). Learning and teaching with understanding. D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning in (pp. 65–97). New York: Macmillan Publishing Company.
  • Kaput, J. (1989). Linking representations in the symbol systems of algebra. Hillsdale, NJ: Lawrence Erlbaum Associates. ISBN9781315044378
  • Karakaş, İ. (2004). Fonksiyon kavramının farklı öğrenim düzeyinde olan öğrencilerdeki gelişimi. Eğitim Araştırmaları Dergisi, 4(16), 64–73. ISSN: 1302-597X / 2528-8911
  • Keller, B. A. and Hirsch, C. R. (1998). Student preferences for representations of functions. International Journal in Mathematics Education ScienceTechnology, 29(1), 1–17. doi.org/10.1080/0020739980290101
  • Khakpour, A. (2013). Methodology of comparative studies in education. Contemporary Educational Researches Journal, 2(1), 20–26.
  • Kieren, T. E. (1993). The learning offractions: maturing in a fraction. Paper presented at the conference fraction learning and instruction, GA, Athens.
  • Kilpatrick, J., Swafford, J. and Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
  • Kubow, P. and Fossum, P. R. (2007). Comparative Education: Exploring Issues. Inter-national Context in . New Jersey: Pearson Merril/Prentice Hall. DOI 61229639
  • Kula, S. (2011). Matematik öğretmen adaylarının dörtlü bilgi modeli ile alan ve alan öğretimi bilgilerinin incelenmesi: Limit örneği. Yayınlanmamış Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü, İzmir.
  • Lee, M. Y. (2017). Pre-service teachers’ flexibility with referent units in solving a fraction division problem. Educational Studies in Mathematics, 96(3), 327–348. https://doi.org/10.1007/s10649-017-9771-6 from retrieved. DOI:10.29333/ejmste/103055
  • Lesh, R. and Doerr, H. M. (2003). Foundations of models and modelling perspective on mathematics teaching, learning, and problem solving. R. Lesh and H. M. Doerr (Eds.), Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning, and teaching in (pp. 3–33). Mahwah: Laurence Erlbaum.
  • Lester, J. and Cheek, E. (1998). The real experts address textbook issues. Journal of Adolescent & Adult Literacy, (41), 282–291.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Novillis-Larson, C. (1980). Locating proper fractions. School Science and Mathematics, 53(5), 423–428. https://doi.org/10.1111/j.1949-8594.1980.tb09687
  • Özer, T. ve İncikabı, L. (2019). İlkokul matematik ders kitaplarındaki kesirlere ilişkin soruların bazı değişkenler açısından incelenmesi. Medeniyet Eğitim Araştırmaları Dergisi, 3(1), 20-37.
  • Pepin, B. and Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms. Zentrablatt fur Didaktik der Mathematik, (33), 158–175. DOI https://doi.org/10.1007/BF02656616
  • Pesen, C. (2008). Kesirlerin sayı doğrusu üzerindeki gösteriminde öğrencilerin öğrenme güçlükleri ve kavram yanılgıları. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 9 (15), 157-168.
  • Porzio, D. T. (1999). Effects of differing emphases on the use of multiple representations and technology on students’ understanding of calculus concepts. Focus on Learning Problems in Mathematics, 21(3), 1–29. ISSN-0272-8893
  • Rickard, A. (1996). Connections and confusion: Teaching perimeter and area with a problem-solving oriented unit. Journal of Mathematical Behavior, 15(3), 303–327. https://doi.org/10.1016/S0732-3123(96)90008-5
  • Schmidt, W., McKnight, C. and Raizen, S. (1997). A Splintered vision: An investigation of U.S. science and mathematics education. The Netherlands: Kluwer Academic Publishers. ISBN-10: 0792344405
  • Seyidoğlu, H. (2016). Bilimsel araştırma ve yazma el kitabı. Güzem Can Yayınları.
  • Sharp, A. (1999). Aspects of English medium textbook use in Hong Kong. New Horizons in Education, (40), 93–102.
  • Sheldon, L. E. (1988). Evaluating ELT textbooks and materials. ELT Journal, (42), 237–246. https://doi.org/10.1093/elt/42.4.237
  • Siebert, D. and Gaskin, N. (2006). Creating, naming, and justifying fractions. Teaching Children Mathematics, 12(8), 394–400. DOI: 10.4236/ce.2013.49B014
  • Siegler, R., Carpenter, T., Fennel, F., Geary, D., Lewis, J. and Okamoto, L. (2010). Developing effective fractions instruction for kindergarten through 8th grade: A practice guide. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from whatworks.ed.gov/publications/ practiceguides.
  • Sierpinska, A. (1992). On understanding the notion of function. G. Harel and E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy in (pp. 25–58). Washington, DC: Mathematical Association of America Simon.
  • Stewart, J. B., Redlin, L. and Watson, S. (2008). College algebra (5th ed.). Belmont, CA: Brooks Cole. ISBN-10: 9780534373528
  • Tall, D. and Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169. DOI:10.1007/BF00305619
  • Temur, Ö. D. (2011). Dördüncü ve beşinci sınıf öğretmenlerinin kesir öğretimine ilişkin görüşleri: Fenomenografik araştırma. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 29, 203-212.
  • Teters, P. and Gabel, D. (1984). 1982-83 Results of the NSTA survey of the needs of elementary teachers regarding their teaching of science. Washington: National Science Teachers Association.
  • Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. Research in collegiate mathematics education, (1), 21–44.
  • Tunç-Pekkan, Z. (2015). An analysis of elementary school children’s fractional knowledge depicted with circle, rectangle, and number line representations. Educational Studies in Mathematics, 89(3), 419–441. doi:10.1007/s10649-015-9606-2 ISSN-0013-1954
  • Usiskin, Z. P. (2007). Some thoughts about fractions. Mathematics Teaching in the Middle school, 12(7), 370–373. DOI:10.26822/iejee.2018541308
  • Van de Walle, J. A., Karp, K. S. and Williams, J. M. B. (2010). Elementary and middle school mathematics. Teaching development (7th ed.). Boston: Pearson. ISBN: 9780133560367, 0133560368
  • Watanabe, T. (2002). Representations in teaching and learning fractions. Teaching Children Mathematics, 8(8), 457–464. DOI: https://doi.org/10.5951/TCM.8.8.0457 Yıldırım, A., ve Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Yıldırım, A. ve Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research methods in the social sciences] (11th ed.). Ankara: Seçkin Yayınevi.
  • Zembat, İ. Ö. (2004). Conceptual development of prospective elementary teachers: The case of division of fractions. Doctoral dissertation, The Pennsylvania State University. ProQuest Digital Dissertations Database.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Mathematics Education
Journal Section Research Articles
Authors

Savaş Baştürk

Mehtap Taştepe

Publication Date March 30, 2024
Submission Date February 5, 2022
Published in Issue Year 2024

Cite

APA Baştürk, S., & Taştepe, M. (2024). TÜRK VE FRANSIZ DERS KİTAPLARINDAKİ KESİRLERİN SAYI DOĞRUSU/ DOĞRU PARÇASI TEMSİLİ. Educational Academic Research(52), 30-44. https://doi.org/10.33418/education.1421954

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License
29929