Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 2, 137 - 145, 22.12.2021

Abstract

References

  • Ulukardeşler A.H. & Ulusoy Y. 2012. 3. Nesil Biyoyakıt Teknolojisi olan Alglerin Türkiye de Üretilebilirlik Potansiyeli, Onuncu Ulusal Kimya Mühendisliği Kongresi, 3-6 Eylül 2012, Koç Üniversitesi, İstanbul.
  • Göçer S. & Zaimoğlu Z. 2018. Üçüncü ve dördüncü nesil biyoyakıtların araştırılması. Uluslararası GAP Yenilenebilir Enerji Ve Enerji Verimliliği Kongresi, 10-12 Mayıs 2018, pp: 71-75, Şanlıurfa, Türkiye. (Conference paper), GAP Yenilenebilir Enerji ve Enerji Verimliliği Merkezi (GAPYENEV-2018).
  • Avcıoğlu A.O., Türker U., Atasoy Z.D.& Koçtürk D. 2011. Tarımsal Kökenli Yenilenebilir Enerjiler-Biyoyakıtlar, Nobel Yayıncılık, Ankara.
  • Naik S.N., Goud V.V., Rout P.K. & Dalai A.K. 2010. Production of first and second generation biofuels: A comprehensive review, Renewable and Sustainable Energy Reviews, 14, 578-597.
  • IEA, 2010. Sustainable Production of second-generation Biofuels: Potential and perspectives in major economies and developing countries. https://www.iea.org/publications/freepublications/publication/second_generation_biofuels.pdf / (accessed 20 September 2021)
  • Navigant Research (2014) Biofuels demand for road transportation will surpass 51 billion gallons annually by 2022. https://www.navigantresearch.com/newsroom/ biofuels-demand-for-road-transportation-will-surpass-51-billion-gallons-annually-by-2022/ (accessed 15 September 2021)
  • UNCTAD, 2015. Second generation biofuel markets: State of play, trade and developing country perspectives. United Nations Conference on Trade and Development (UNCTAD). UNCTAD/DITC/TED/2015/8, United Nations Publication.
  • Mofijur M., Siddiki Y.A., Shuvho B.A., Djavanroodi F., Rizwanul Fattah I.M., Ong H.C., Chowdhury M.A. & Mahlia, T.M.I. 2021. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review, Chemosphere 270, 128642.
  • Gardy J., Rehan M., Hassanpour A., Lai X. & Nizami, A.S. 2019. Advances in nanocatalysts based biodiesel production from non-food feedstocks, J. Environ. Manag. 249, 109316.
  • USDA 2020. Statistical data of USDA. Retrieved from: https://usda.library. cornell.edu/concern/publications/ tx31qh68h? locale=en./ (accessed 2 October 2021)
  • TÜİK 2019. Statistical data of TUIK. Retrieved from: https://biruni.tuik.gov.tr/ medas/?kn=104&locale=tr./ (accessed 2 October 2021)
  • TÜİK 2020. Statistical data of FAO. Retrieved from:https://biruni.tuik.gov.tr/ medas/?kn=92&locale=tr./ (accessed 2 October 2021)
  • Irabien A. & Darton R.C. 2016. Energy–water–food nexus in the spanish greenhouse tomato production, Clean Technol. Environ. Policy 18 (5), 1307–1316.
  • Hasan A.H. & Avami A. 2018. Water and emissions nexus for biodiesel in Iran. Renew. Sustain. Energy Rev. 93 (5), 354–363.
  • Yılmaz A., Yılmaz H., Arslan Y., Çiftçi V. & Baloch F.S. 2021. Ülkemizde Alternatif Yağ Bitkilerinin Durumu, Avrupa Bilim ve Teknoloji Dergisi, Özel Sayı 22, 93-100.
  • Gizlenci Ş., Acar M. & Şahin M. 2012. Türkiye’de yenilenebilir enerji kaynaklarının (Biyodizel, biyoetanol ve biyokütle) projeksiyonu, Tarım Makinaları Bilimi Dergisi, 8(3), 337-344.
  • Bayramin S. 2006. Aspir (Carthamus tinctoriusL.) / Kolza (Brassica napusspp. oleifera L.) Tarımı ve Islahı, Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi,15(1-2), 74-85.
  • Yıldırım M. 2005. Seçilmiş alternatif keten (Linum usitatissimumL.) hatlarının verimve verim öğeleri bakımından karşılaştırılması. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara. FAO 2014b. Crop Yield. FAOSTAT, http://www.fao.org/faostat/en/#data./ (accessed 25 September 2021).
  • Chong C.T., Loe T.Y., Wong K.Y., Ashokkumar V., Lam S.S, Chong W.T., Borrion A., Tian B. & Han N.G.J. 2021. Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus, Environmental Technology & Innovation, 22, 101408.
  • USDA 2017. Foreign Agricultural Service, U.S. Department of Agriculture Gain Report. https://apps.fas.usda.gov/newgainapi/api/report/ (accessed 22 September 2021)
  • Johnston M. & Holloway T. 2007. Policy analysis a global comparison of national biodiesel production potentials, Environ. Sci. Technol, 41 (23), 7967–7973.
  • Agarwal A.K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy Combust. Sci, 33(3), 233–271.
  • Altın R., Cetinkaya S. & Yücesu H. 2001. Potential of using vegetable oil fuels as fuel for diesel engines, Energy Convers. Manage, 42, 529–538.
  • Karmakar A., Karmakar S. & Mukherjee S. 2010. Properties of various plants and animals feedstocks for biodiesel productio, Bioresour. Technol, 101(19), 7201-7210.

Determination of the Amount of Land Area Required for Alternative Second-generation Feedstock to Replace First-generation Feedstock in Biodiesel Production in Turkey

Year 2021, Volume: 5 Issue: 2, 137 - 145, 22.12.2021

Abstract

In this study, the amount of land area required for the replacement of sunflower and cottonseed plants, which are used as the first-generation feedstock source in the biodiesel production sector, which has the highest growing area as an oil plant in our country, with the second-generation vegetable oil feedstock was calculated. Safflower and rapeseed plants were selected as the second-generation vegetable oil feedstocks source. In this way, the required amount of land area and the amount of land saved to provide the same total potential biodiesel volume using second-generation feedstocks in the production sector has been determined. With the increase in the use of second-generation feedstock in biodiesel production, it is expected that land area use will be saved, our oil imports will decrease, and the pressure on the food sector will alleviation.

References

  • Ulukardeşler A.H. & Ulusoy Y. 2012. 3. Nesil Biyoyakıt Teknolojisi olan Alglerin Türkiye de Üretilebilirlik Potansiyeli, Onuncu Ulusal Kimya Mühendisliği Kongresi, 3-6 Eylül 2012, Koç Üniversitesi, İstanbul.
  • Göçer S. & Zaimoğlu Z. 2018. Üçüncü ve dördüncü nesil biyoyakıtların araştırılması. Uluslararası GAP Yenilenebilir Enerji Ve Enerji Verimliliği Kongresi, 10-12 Mayıs 2018, pp: 71-75, Şanlıurfa, Türkiye. (Conference paper), GAP Yenilenebilir Enerji ve Enerji Verimliliği Merkezi (GAPYENEV-2018).
  • Avcıoğlu A.O., Türker U., Atasoy Z.D.& Koçtürk D. 2011. Tarımsal Kökenli Yenilenebilir Enerjiler-Biyoyakıtlar, Nobel Yayıncılık, Ankara.
  • Naik S.N., Goud V.V., Rout P.K. & Dalai A.K. 2010. Production of first and second generation biofuels: A comprehensive review, Renewable and Sustainable Energy Reviews, 14, 578-597.
  • IEA, 2010. Sustainable Production of second-generation Biofuels: Potential and perspectives in major economies and developing countries. https://www.iea.org/publications/freepublications/publication/second_generation_biofuels.pdf / (accessed 20 September 2021)
  • Navigant Research (2014) Biofuels demand for road transportation will surpass 51 billion gallons annually by 2022. https://www.navigantresearch.com/newsroom/ biofuels-demand-for-road-transportation-will-surpass-51-billion-gallons-annually-by-2022/ (accessed 15 September 2021)
  • UNCTAD, 2015. Second generation biofuel markets: State of play, trade and developing country perspectives. United Nations Conference on Trade and Development (UNCTAD). UNCTAD/DITC/TED/2015/8, United Nations Publication.
  • Mofijur M., Siddiki Y.A., Shuvho B.A., Djavanroodi F., Rizwanul Fattah I.M., Ong H.C., Chowdhury M.A. & Mahlia, T.M.I. 2021. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review, Chemosphere 270, 128642.
  • Gardy J., Rehan M., Hassanpour A., Lai X. & Nizami, A.S. 2019. Advances in nanocatalysts based biodiesel production from non-food feedstocks, J. Environ. Manag. 249, 109316.
  • USDA 2020. Statistical data of USDA. Retrieved from: https://usda.library. cornell.edu/concern/publications/ tx31qh68h? locale=en./ (accessed 2 October 2021)
  • TÜİK 2019. Statistical data of TUIK. Retrieved from: https://biruni.tuik.gov.tr/ medas/?kn=104&locale=tr./ (accessed 2 October 2021)
  • TÜİK 2020. Statistical data of FAO. Retrieved from:https://biruni.tuik.gov.tr/ medas/?kn=92&locale=tr./ (accessed 2 October 2021)
  • Irabien A. & Darton R.C. 2016. Energy–water–food nexus in the spanish greenhouse tomato production, Clean Technol. Environ. Policy 18 (5), 1307–1316.
  • Hasan A.H. & Avami A. 2018. Water and emissions nexus for biodiesel in Iran. Renew. Sustain. Energy Rev. 93 (5), 354–363.
  • Yılmaz A., Yılmaz H., Arslan Y., Çiftçi V. & Baloch F.S. 2021. Ülkemizde Alternatif Yağ Bitkilerinin Durumu, Avrupa Bilim ve Teknoloji Dergisi, Özel Sayı 22, 93-100.
  • Gizlenci Ş., Acar M. & Şahin M. 2012. Türkiye’de yenilenebilir enerji kaynaklarının (Biyodizel, biyoetanol ve biyokütle) projeksiyonu, Tarım Makinaları Bilimi Dergisi, 8(3), 337-344.
  • Bayramin S. 2006. Aspir (Carthamus tinctoriusL.) / Kolza (Brassica napusspp. oleifera L.) Tarımı ve Islahı, Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi,15(1-2), 74-85.
  • Yıldırım M. 2005. Seçilmiş alternatif keten (Linum usitatissimumL.) hatlarının verimve verim öğeleri bakımından karşılaştırılması. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara. FAO 2014b. Crop Yield. FAOSTAT, http://www.fao.org/faostat/en/#data./ (accessed 25 September 2021).
  • Chong C.T., Loe T.Y., Wong K.Y., Ashokkumar V., Lam S.S, Chong W.T., Borrion A., Tian B. & Han N.G.J. 2021. Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus, Environmental Technology & Innovation, 22, 101408.
  • USDA 2017. Foreign Agricultural Service, U.S. Department of Agriculture Gain Report. https://apps.fas.usda.gov/newgainapi/api/report/ (accessed 22 September 2021)
  • Johnston M. & Holloway T. 2007. Policy analysis a global comparison of national biodiesel production potentials, Environ. Sci. Technol, 41 (23), 7967–7973.
  • Agarwal A.K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy Combust. Sci, 33(3), 233–271.
  • Altın R., Cetinkaya S. & Yücesu H. 2001. Potential of using vegetable oil fuels as fuel for diesel engines, Energy Convers. Manage, 42, 529–538.
  • Karmakar A., Karmakar S. & Mukherjee S. 2010. Properties of various plants and animals feedstocks for biodiesel productio, Bioresour. Technol, 101(19), 7201-7210.
There are 24 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Hülya Karabaş

Publication Date December 22, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Karabaş, H. (2021). Determination of the Amount of Land Area Required for Alternative Second-generation Feedstock to Replace First-generation Feedstock in Biodiesel Production in Turkey. Eurasian Journal of Agricultural Research, 5(2), 137-145.
AMA Karabaş H. Determination of the Amount of Land Area Required for Alternative Second-generation Feedstock to Replace First-generation Feedstock in Biodiesel Production in Turkey. EJAR. December 2021;5(2):137-145.
Chicago Karabaş, Hülya. “Determination of the Amount of Land Area Required for Alternative Second-Generation Feedstock to Replace First-Generation Feedstock in Biodiesel Production in Turkey”. Eurasian Journal of Agricultural Research 5, no. 2 (December 2021): 137-45.
EndNote Karabaş H (December 1, 2021) Determination of the Amount of Land Area Required for Alternative Second-generation Feedstock to Replace First-generation Feedstock in Biodiesel Production in Turkey. Eurasian Journal of Agricultural Research 5 2 137–145.
IEEE H. Karabaş, “Determination of the Amount of Land Area Required for Alternative Second-generation Feedstock to Replace First-generation Feedstock in Biodiesel Production in Turkey”, EJAR, vol. 5, no. 2, pp. 137–145, 2021.
ISNAD Karabaş, Hülya. “Determination of the Amount of Land Area Required for Alternative Second-Generation Feedstock to Replace First-Generation Feedstock in Biodiesel Production in Turkey”. Eurasian Journal of Agricultural Research 5/2 (December 2021), 137-145.
JAMA Karabaş H. Determination of the Amount of Land Area Required for Alternative Second-generation Feedstock to Replace First-generation Feedstock in Biodiesel Production in Turkey. EJAR. 2021;5:137–145.
MLA Karabaş, Hülya. “Determination of the Amount of Land Area Required for Alternative Second-Generation Feedstock to Replace First-Generation Feedstock in Biodiesel Production in Turkey”. Eurasian Journal of Agricultural Research, vol. 5, no. 2, 2021, pp. 137-45.
Vancouver Karabaş H. Determination of the Amount of Land Area Required for Alternative Second-generation Feedstock to Replace First-generation Feedstock in Biodiesel Production in Turkey. EJAR. 2021;5(2):137-45.
Eurasian Journal of Agricultural Research (EJAR)   ISSN: 2636-8226   Web: https://dergipark.org.tr/en/pub/ejar   e-mail: agriculturalresearchjournal@gmail.com