Review
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 1, 8 - 18, 31.08.2019

Abstract

References

  • 1) Ahmad M., Benjakul S., Prodpran T. & Agustini T. 2012. Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils, Food Hydrocolloids, 28, 189-199.
  • 2) Amarante C. & Banks N. H. 2001. Post-harvest physiology and quality of coated fruits and vegetables, Horticultural Review, 26, 161-238.
  • 3) Anonymous. 1992. In: Comprehensive Dictionary of Physical Chemistry, L. Ulicky and T. J. Kemp, eds, Ellis Horwood, Chichester, UK, 15,65.
  • 4) Basurco B., Carballo J. E. & Lem A. 2014. Seafood in Mediterranean Countries, International center for advanced Mediterranean agronomic studies publication, 174-202.
  • 5) Bech H. E. 2002. Commercial bacterial starter cultures for fermented foods of the future. International Journal of Food Microbiology, 78, 119 -131.
  • 6) Berghof K. & Stahl U. 1991. Verbesserung der Filtrierbarkeit von Bier durch Verwendung beta-Glukanase-aktive Brauhefen, BioEngineering, 7, 27-32.
  • 7) Bourtoom T. 2008. Edible films and coatings: characteristics and properties, International Food Research Journal, 15(3), 237-248.
  • 8) Burt S. 2004. Essential oils: Their antibacterial properties and potential applications in foods, International Journal of Food Microbiology, 94, 223-253.
  • 9) Calo-mata P., Arlindo S., Boehme K., De M. T., Pascoal A. & Barrosvelazquez J. 2008. Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products, Food and Bioprocess Technology, 1, 43-63.
  • 10) Chapman J.W. 1991. The development and use of novel yeast strains for food and drink manufacture, Trends in Food Science Technology, 2, 176-179.
  • 11) Cleveland J., Montville T., Nes I. & Chikindas M. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation, International Journal of Food Microbiology, 71, 1-20.
  • 12) Coma V. 2012. Antimicrobial and antioxidant active packaging for meat and poultry, Advances in Meat, Poultry and Seafood Packaging, 477-498.
  • 13) Cordeiro de Azeredo H. M. 2012. Edible coatings, Advances in fruit processing technologies, 345-361.
  • 14) Cuq. B., Gontard N. & Guilbert S. 1995. Edible films and coatings as active layers. Active Food Packaging, 111-142.
  • 15) Dalgaard P., Madsen H., Samieian N. & Emborg J. 2006. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone) effect of modified atmosphere packaging and previous frozen storage, Journal of Applied Microbiology, 101, 80-95.
  • 16) Dalgaard P., Madsen H., Samieian N. & Emborg, J. 2006. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone) effect of modified atmosphere packaging and previous frozen storage. Journal of Applied Microbiology, 101, 80-95.
  • 17) Dehghani S., Hosseini S. V. & Regenstein J. M. 2018. Edible films and coatings in seafood preservation, Food Chemistry, 240, 505-513.
  • 18) Dortu c. & Thonart p. 2009. Bacteriocins from lactic acid bacteria: interest for food products biopreservation, Biotechnology, Agronomy, Society and Environment, 13, 143-154.
  • 19) Ejaz M., Arfat Y. A., Mulla M. & Ahmed J. 2018. Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging, Food Packaging and Shelf Life, 15, 113-121.
  • 20) Emborg J., Laursen B., Rathjen T. & Dalgaard P. 2002. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2°C, Journal of Applied Microbiology, 92, 790-799.
  • 21) Embuscado M. E. & Huber K. C. 2009. Edible films and coatings for food applications. Dordrecht: Springer Inc, New York, NY, USA.
  • 22) Erkmen O. & Barazi A. O. 2018. General characteristics of edible films, Journal of food Biotechnology Research, 2(13), 1- 4.
  • 23) Erkmen O. & Bozoglu T. F. 2016. Principles into Practice, Food Microbiology, 458.
  • 24) Florou-Paneri P. Christaki E. & Bonos E. 2013. Lactic acid bacteria as source of functional ingredients, In: Lactic Acid Bacteria-R & D for Food, Health and Livestock Purposes, Intech Open Access Publisher.
  • 25) Galvez A., Abriouel H., Lopez R. & Omar N. 2007. Bacteriocin-based strategies for food biopreservation, International Journal of Food Microbiology, 120, 51-70.
  • 26) Garcia P., Rodriguez L., Rodriguez A. & Martinez B. 2010. Food biopreservation: Promising strategies using bacteriocins, bacteriophage and endolysins, Trends in Food Science & Technology, 21, 373-382.
  • 27) Geisen R. 1993. Fungal starter cultures for fermented foods: molecular aspects, Trends in Food Science Technology, 4, 251-256.
  • 28) Geisen R., Glenn E. & Leistner L. 1990. Two Penicillium camemberti mutants affected in the production of cyclopiazonic acid, Applied and Environmental Microbiology, 56, 3587-3590.
  • 29) Gennadios A., Ghorpade V. M., Weller C. L. & Hanna M. A. 1996. Heat curing of soy protein films, Transactions of the American society of Agricultural engineers, 39(2), 575-579.
  • 30) Guilbert S. 1995. Technology and application of edible protective films, Food packaging and preservation, 371-394. 31) Guilbert S., Cuq B. & Gontard N. 1997. Recent innovations in edible andlor biodegradable packaging materials, Food Additives and Contaminants, 14(6-7), 741-751.
  • 32) Guilbert S., Gontard N. & Gorris L. G. M. 1996. Prolongation of the shelf life of perishable food products using biodegradable films and coatings, LWT-Food Science and Technology, 29, 10-17.
  • 33) Han J. H. 2000. Antimicrobial food packaging, Food Technology, 54(3), 56- 65.
  • 34) Han J. H. 2001. Design of edible and biodegradable films/coatings containing active ingredients, Active BiopoIymer Films and Coatings for Food and Biotechnological Uses, 187-198.
  • 35) Han J. H. 2002. Protein-based edible films and coatings carrying antimicrobial agents, Protein-based Films and Coatings, 485- 499.
  • 36) Han J. H. 2005. Antimicrobial packaging systems, Innovations in Food Packaging, 80-101.
  • 37) Han J. H. 2014. Innovation in food packaging, Edible Films and Coatings, 213-255.
  • 38) Kester J. J. & Fennema O. 1986. Edible films and coatings, Food Technology, 48, 47-59.
  • 39) Krochta J. M. & De Mulder-Johnston C. 1997. Edible and biodegradable polymer films: challenges and opportunities, Food Technology, 51(2), 61-74.
  • 40) Le Bars J. 1979. Cyclopiazonic acid production by Penicillium camembertii Thorn and natural occurrence of this mycotoxin in cheese, Applied and Environmental Microbiology, 38(6), 1052-1055.
  • 41) Leroi f. 2010. Occurrence and role of lactic acid bacteria in seafood products, Food Microbiology, 27, 698–709.
  • 42) Martucci J. F., Gende L. B., Neira L. M. & Ruseckaite R. A. 2015. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films, Industrial Crops and Products, 71, 205-213.
  • 43) Matak K. E., Tahergorabi R. & Jaczynski J. 2015. Protein isolates recovered by isoelectric solubilization/precipitation processing from muscle food by-products as a component of nutraceutical foods, Food Research International, 77, 697-703.
  • 44) McKay L.L. & Baldwin K.A. 1990. Applications for Biotechnology: present and future improvements in lactic acid bacteria, Federation of European Microbiological Societies, 87, 3-14.
  • 45) Mejlholm O., Kjeldgaard J., Modberg A., Vest M. B., Boknas N. & Koort J., et al. 2008. Microbial spoilage and growth of Listeria monocytogenes during chilled storage of brined shrimp (Pandalus borealis). International Journal of Food Microbiology, 124, 250-259.
  • 46) Micard X., Belamri R., Morel M. H. & Guilbert S. 2000. Properties of chemically and physically treated wheat gluten films, Journal of Agricultural and Food Chemistry, 48, 2948-2953.
  • 47) Miller K. S., Chiang M. T. & Krochta J. M. 1997. Heat curing of whey protein films, Journal of Food Science, 62(6), 1189-1193.
  • 48) Min S. Harris L. J. & Krochta J. M. 2005. Listeria monocytogenes inhibition by whey protein films and coatings incorporating the lactoperoxidase system. Journal of Food Science, 70, 317-324.
  • 49) Naidu A. S. 2006. Overview. In: Naidu AS, editor. Natural Food Antimicrobial Systems, CRC Press, London, 1-16.
  • 50) Nes I. 2011. History, current knowledge, and future directions on bacteriocin research in lactic acid bacteria, Prokaryotic Antimicrobial Peptides: From Genes to Applications, 3-12.
  • 51) Nilsson L. 1997. Control of Listeria monocytogenes in cold-smoked salmon by biopreservation. Ph.D Thesis Danish Institute for Fisheries Research and The Royal Veterinary and Agricultural University of Copenhagen. Denmark.
  • 52) Nilsson L., Gram L. & Huss H. 1999. Growth control of Listeria monocytogenes on cold smoked salmon using a competitive lactic acid bacteria flora, Journal of Food Protection, 62, 336-342.
  • 53) Nilsson L., Hansen T., Garrido P., Buchrieser C., Glaser P. & Knochel S., et al. 2005. Growth inhibition of Listeria monocytogenes by a non bacteriocinogenic Carnobacterium piscicola, Journal of Applied Microbiology, 98, 172-183.
  • 54) Nussinovitch A. 2003. Water Soluble Polymer Applications in Foods, Blackwell Science, Oxford, UK, 29-69.
  • 55) Pavlath A. E. & Orts W. 2009. Edible films and coatings: Why, What, and How? In: Embuscado ME, Huber KC (eds.). Edible films and coatings for food applications. Springer, New York, 1-23.
  • 56) Peyron A. 1991. L'enrobage et les produits filrnogenes: un nouveau mode dkmballage. Viandes Prod. Cares 12(2), 4-146.
  • 57) Pietrowski B. N., Tahergorabi R. & Jaczynski J. 2012. Dynamic rheology and thermal transitions of surimi seafood enhanced with ω-3 -rich oils. Food Hydrocolloids, 27, 384-389.
  • 58) Rodgers S. 2001. Preserving non-fermented refrigerated foods with microbial cultures, Trends in Food Science and Technology, 12, 276-284.
  • 59) Sánchez-Ortega I., García-Almendárez B. E., Santos-López E. M., Amaro-Reyes A., Barboza-Corona J. E. & Regalado C. 2014. Antimicrobial edible films and coatings for meat and meat products preservation, The Scientific World Journal, 2014, 1-18.
  • 60) Sothornvit R. & Krochta J. M. 2000. Plasticizer effect on oxygen permeability of P-lactoglobulin films, Journal of Agricultural and Food Chemistry, 48, 6298-6302.
  • 61) Were L., Hettiarachcky N. S. & Coleman M. 1999. Properties of cysteine-added soy protein-wheat gluten films, Food Science, 64(3), 514-518.
  • 62) Yildirim M. & Hettiarachchy N. S. 1997. Biopolymers produced by cross-linking soybean 11s globulin with whey proteins using transglutaminase, Food Science, 62(2), 270-275.

Protection of Seafood by Edible Films and Genetic Modification of Protective Culture

Year 2019, Volume: 3 Issue: 1, 8 - 18, 31.08.2019

Abstract

Seafood
is a good source of nutrients like protein, fats, vitamins and many other
micronutrients. The texture of seafood makes it more vulnerable to degrade due
to microorganisms. As with the passage of time, seafood consumption increased
seafood industries tries to overcome this problem and to extend the shelf life
of seafood by controlling the growth of microorganisms and improve the quality
of seafood by retarding different metabolic and enzymatically reactions which
leads fast towards degradation. For this purpose scientists use different
techniques like protective culture made from a starter culture of
microorganisms and some protective culture is made from the genetic changes in the
genome of microorganisms with the help of recombinant DNA technology. Scientists
used edible films to cover the seafood products to prevent the interference of the
external environment with food product so it can store for long without any
deterioration. This review will cover different microbial protective culture,
genetically modified protective culture and about properties of the coating or
edible films on seafood products.

References

  • 1) Ahmad M., Benjakul S., Prodpran T. & Agustini T. 2012. Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils, Food Hydrocolloids, 28, 189-199.
  • 2) Amarante C. & Banks N. H. 2001. Post-harvest physiology and quality of coated fruits and vegetables, Horticultural Review, 26, 161-238.
  • 3) Anonymous. 1992. In: Comprehensive Dictionary of Physical Chemistry, L. Ulicky and T. J. Kemp, eds, Ellis Horwood, Chichester, UK, 15,65.
  • 4) Basurco B., Carballo J. E. & Lem A. 2014. Seafood in Mediterranean Countries, International center for advanced Mediterranean agronomic studies publication, 174-202.
  • 5) Bech H. E. 2002. Commercial bacterial starter cultures for fermented foods of the future. International Journal of Food Microbiology, 78, 119 -131.
  • 6) Berghof K. & Stahl U. 1991. Verbesserung der Filtrierbarkeit von Bier durch Verwendung beta-Glukanase-aktive Brauhefen, BioEngineering, 7, 27-32.
  • 7) Bourtoom T. 2008. Edible films and coatings: characteristics and properties, International Food Research Journal, 15(3), 237-248.
  • 8) Burt S. 2004. Essential oils: Their antibacterial properties and potential applications in foods, International Journal of Food Microbiology, 94, 223-253.
  • 9) Calo-mata P., Arlindo S., Boehme K., De M. T., Pascoal A. & Barrosvelazquez J. 2008. Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products, Food and Bioprocess Technology, 1, 43-63.
  • 10) Chapman J.W. 1991. The development and use of novel yeast strains for food and drink manufacture, Trends in Food Science Technology, 2, 176-179.
  • 11) Cleveland J., Montville T., Nes I. & Chikindas M. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation, International Journal of Food Microbiology, 71, 1-20.
  • 12) Coma V. 2012. Antimicrobial and antioxidant active packaging for meat and poultry, Advances in Meat, Poultry and Seafood Packaging, 477-498.
  • 13) Cordeiro de Azeredo H. M. 2012. Edible coatings, Advances in fruit processing technologies, 345-361.
  • 14) Cuq. B., Gontard N. & Guilbert S. 1995. Edible films and coatings as active layers. Active Food Packaging, 111-142.
  • 15) Dalgaard P., Madsen H., Samieian N. & Emborg J. 2006. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone) effect of modified atmosphere packaging and previous frozen storage, Journal of Applied Microbiology, 101, 80-95.
  • 16) Dalgaard P., Madsen H., Samieian N. & Emborg, J. 2006. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone) effect of modified atmosphere packaging and previous frozen storage. Journal of Applied Microbiology, 101, 80-95.
  • 17) Dehghani S., Hosseini S. V. & Regenstein J. M. 2018. Edible films and coatings in seafood preservation, Food Chemistry, 240, 505-513.
  • 18) Dortu c. & Thonart p. 2009. Bacteriocins from lactic acid bacteria: interest for food products biopreservation, Biotechnology, Agronomy, Society and Environment, 13, 143-154.
  • 19) Ejaz M., Arfat Y. A., Mulla M. & Ahmed J. 2018. Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging, Food Packaging and Shelf Life, 15, 113-121.
  • 20) Emborg J., Laursen B., Rathjen T. & Dalgaard P. 2002. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2°C, Journal of Applied Microbiology, 92, 790-799.
  • 21) Embuscado M. E. & Huber K. C. 2009. Edible films and coatings for food applications. Dordrecht: Springer Inc, New York, NY, USA.
  • 22) Erkmen O. & Barazi A. O. 2018. General characteristics of edible films, Journal of food Biotechnology Research, 2(13), 1- 4.
  • 23) Erkmen O. & Bozoglu T. F. 2016. Principles into Practice, Food Microbiology, 458.
  • 24) Florou-Paneri P. Christaki E. & Bonos E. 2013. Lactic acid bacteria as source of functional ingredients, In: Lactic Acid Bacteria-R & D for Food, Health and Livestock Purposes, Intech Open Access Publisher.
  • 25) Galvez A., Abriouel H., Lopez R. & Omar N. 2007. Bacteriocin-based strategies for food biopreservation, International Journal of Food Microbiology, 120, 51-70.
  • 26) Garcia P., Rodriguez L., Rodriguez A. & Martinez B. 2010. Food biopreservation: Promising strategies using bacteriocins, bacteriophage and endolysins, Trends in Food Science & Technology, 21, 373-382.
  • 27) Geisen R. 1993. Fungal starter cultures for fermented foods: molecular aspects, Trends in Food Science Technology, 4, 251-256.
  • 28) Geisen R., Glenn E. & Leistner L. 1990. Two Penicillium camemberti mutants affected in the production of cyclopiazonic acid, Applied and Environmental Microbiology, 56, 3587-3590.
  • 29) Gennadios A., Ghorpade V. M., Weller C. L. & Hanna M. A. 1996. Heat curing of soy protein films, Transactions of the American society of Agricultural engineers, 39(2), 575-579.
  • 30) Guilbert S. 1995. Technology and application of edible protective films, Food packaging and preservation, 371-394. 31) Guilbert S., Cuq B. & Gontard N. 1997. Recent innovations in edible andlor biodegradable packaging materials, Food Additives and Contaminants, 14(6-7), 741-751.
  • 32) Guilbert S., Gontard N. & Gorris L. G. M. 1996. Prolongation of the shelf life of perishable food products using biodegradable films and coatings, LWT-Food Science and Technology, 29, 10-17.
  • 33) Han J. H. 2000. Antimicrobial food packaging, Food Technology, 54(3), 56- 65.
  • 34) Han J. H. 2001. Design of edible and biodegradable films/coatings containing active ingredients, Active BiopoIymer Films and Coatings for Food and Biotechnological Uses, 187-198.
  • 35) Han J. H. 2002. Protein-based edible films and coatings carrying antimicrobial agents, Protein-based Films and Coatings, 485- 499.
  • 36) Han J. H. 2005. Antimicrobial packaging systems, Innovations in Food Packaging, 80-101.
  • 37) Han J. H. 2014. Innovation in food packaging, Edible Films and Coatings, 213-255.
  • 38) Kester J. J. & Fennema O. 1986. Edible films and coatings, Food Technology, 48, 47-59.
  • 39) Krochta J. M. & De Mulder-Johnston C. 1997. Edible and biodegradable polymer films: challenges and opportunities, Food Technology, 51(2), 61-74.
  • 40) Le Bars J. 1979. Cyclopiazonic acid production by Penicillium camembertii Thorn and natural occurrence of this mycotoxin in cheese, Applied and Environmental Microbiology, 38(6), 1052-1055.
  • 41) Leroi f. 2010. Occurrence and role of lactic acid bacteria in seafood products, Food Microbiology, 27, 698–709.
  • 42) Martucci J. F., Gende L. B., Neira L. M. & Ruseckaite R. A. 2015. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films, Industrial Crops and Products, 71, 205-213.
  • 43) Matak K. E., Tahergorabi R. & Jaczynski J. 2015. Protein isolates recovered by isoelectric solubilization/precipitation processing from muscle food by-products as a component of nutraceutical foods, Food Research International, 77, 697-703.
  • 44) McKay L.L. & Baldwin K.A. 1990. Applications for Biotechnology: present and future improvements in lactic acid bacteria, Federation of European Microbiological Societies, 87, 3-14.
  • 45) Mejlholm O., Kjeldgaard J., Modberg A., Vest M. B., Boknas N. & Koort J., et al. 2008. Microbial spoilage and growth of Listeria monocytogenes during chilled storage of brined shrimp (Pandalus borealis). International Journal of Food Microbiology, 124, 250-259.
  • 46) Micard X., Belamri R., Morel M. H. & Guilbert S. 2000. Properties of chemically and physically treated wheat gluten films, Journal of Agricultural and Food Chemistry, 48, 2948-2953.
  • 47) Miller K. S., Chiang M. T. & Krochta J. M. 1997. Heat curing of whey protein films, Journal of Food Science, 62(6), 1189-1193.
  • 48) Min S. Harris L. J. & Krochta J. M. 2005. Listeria monocytogenes inhibition by whey protein films and coatings incorporating the lactoperoxidase system. Journal of Food Science, 70, 317-324.
  • 49) Naidu A. S. 2006. Overview. In: Naidu AS, editor. Natural Food Antimicrobial Systems, CRC Press, London, 1-16.
  • 50) Nes I. 2011. History, current knowledge, and future directions on bacteriocin research in lactic acid bacteria, Prokaryotic Antimicrobial Peptides: From Genes to Applications, 3-12.
  • 51) Nilsson L. 1997. Control of Listeria monocytogenes in cold-smoked salmon by biopreservation. Ph.D Thesis Danish Institute for Fisheries Research and The Royal Veterinary and Agricultural University of Copenhagen. Denmark.
  • 52) Nilsson L., Gram L. & Huss H. 1999. Growth control of Listeria monocytogenes on cold smoked salmon using a competitive lactic acid bacteria flora, Journal of Food Protection, 62, 336-342.
  • 53) Nilsson L., Hansen T., Garrido P., Buchrieser C., Glaser P. & Knochel S., et al. 2005. Growth inhibition of Listeria monocytogenes by a non bacteriocinogenic Carnobacterium piscicola, Journal of Applied Microbiology, 98, 172-183.
  • 54) Nussinovitch A. 2003. Water Soluble Polymer Applications in Foods, Blackwell Science, Oxford, UK, 29-69.
  • 55) Pavlath A. E. & Orts W. 2009. Edible films and coatings: Why, What, and How? In: Embuscado ME, Huber KC (eds.). Edible films and coatings for food applications. Springer, New York, 1-23.
  • 56) Peyron A. 1991. L'enrobage et les produits filrnogenes: un nouveau mode dkmballage. Viandes Prod. Cares 12(2), 4-146.
  • 57) Pietrowski B. N., Tahergorabi R. & Jaczynski J. 2012. Dynamic rheology and thermal transitions of surimi seafood enhanced with ω-3 -rich oils. Food Hydrocolloids, 27, 384-389.
  • 58) Rodgers S. 2001. Preserving non-fermented refrigerated foods with microbial cultures, Trends in Food Science and Technology, 12, 276-284.
  • 59) Sánchez-Ortega I., García-Almendárez B. E., Santos-López E. M., Amaro-Reyes A., Barboza-Corona J. E. & Regalado C. 2014. Antimicrobial edible films and coatings for meat and meat products preservation, The Scientific World Journal, 2014, 1-18.
  • 60) Sothornvit R. & Krochta J. M. 2000. Plasticizer effect on oxygen permeability of P-lactoglobulin films, Journal of Agricultural and Food Chemistry, 48, 6298-6302.
  • 61) Were L., Hettiarachcky N. S. & Coleman M. 1999. Properties of cysteine-added soy protein-wheat gluten films, Food Science, 64(3), 514-518.
  • 62) Yildirim M. & Hettiarachchy N. S. 1997. Biopolymers produced by cross-linking soybean 11s globulin with whey proteins using transglutaminase, Food Science, 62(2), 270-275.
There are 61 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Article
Authors

Maliha Afreen 0000-0001-7542-1318

Publication Date August 31, 2019
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Afreen, M. (2019). Protection of Seafood by Edible Films and Genetic Modification of Protective Culture. Eurasian Journal of Food Science and Technology, 3(1), 8-18.
AMA Afreen M. Protection of Seafood by Edible Films and Genetic Modification of Protective Culture. EJFST. August 2019;3(1):8-18.
Chicago Afreen, Maliha. “Protection of Seafood by Edible Films and Genetic Modification of Protective Culture”. Eurasian Journal of Food Science and Technology 3, no. 1 (August 2019): 8-18.
EndNote Afreen M (August 1, 2019) Protection of Seafood by Edible Films and Genetic Modification of Protective Culture. Eurasian Journal of Food Science and Technology 3 1 8–18.
IEEE M. Afreen, “Protection of Seafood by Edible Films and Genetic Modification of Protective Culture”, EJFST, vol. 3, no. 1, pp. 8–18, 2019.
ISNAD Afreen, Maliha. “Protection of Seafood by Edible Films and Genetic Modification of Protective Culture”. Eurasian Journal of Food Science and Technology 3/1 (August 2019), 8-18.
JAMA Afreen M. Protection of Seafood by Edible Films and Genetic Modification of Protective Culture. EJFST. 2019;3:8–18.
MLA Afreen, Maliha. “Protection of Seafood by Edible Films and Genetic Modification of Protective Culture”. Eurasian Journal of Food Science and Technology, vol. 3, no. 1, 2019, pp. 8-18.
Vancouver Afreen M. Protection of Seafood by Edible Films and Genetic Modification of Protective Culture. EJFST. 2019;3(1):8-18.

Eurasian Journal of Food Science and Technology (EJFST)   e-ISSN: 2667-4890   Web: https://dergipark.org.tr/en/pub/ejfst   e-mail: foodsciencejournal@gmail.com