Research Article
BibTex RIS Cite

Soil quality as related to sampling depth on semiarid and semihumid pastures

Year 2026, Volume: 15 Issue: 1, 56 - 73, 02.01.2026
https://doi.org/10.18393/ejss.1833464

Abstract

Soils in pastures vary significantly with depth due to the stronger interaction between soil and plants in the topsoil. However, research on soil resources in pastures has not yet reached a consensus on the appropriate soil depth to consider when evaluating soil quality (SQ). This study aimed to assess how SQ changes with soil depth in two distinct pasture systems. A semiarid site (Kurşunlu) and a semihumid site (Ilgaz) were selected, and representative sampling areas were designated in each. At both sites, soils at 0-10 and 10-20 cm depths were intensively sampled. The soil quality index (SQI) was calculated for 0-10, 10-20, and 0-20 cm (combining 0-10 and 10-20 cm) soil depths. The means of SQI related to depth and site were compared using one-way ANOVA. The SQI values ranged from 0.211 (± 0.002, 0-10 cm) to 0.556 (± 0.004, 10-20 cm) at Kurşunlu and from 0.230 (± 0.003, 0-10 cm) to 0.601 (± 0. 003, 10-20 cm) at Ilgaz. On both sites, the depth-related SQI means were significantly different, and in all cases, SQI was significantly higher at Ilgaz. The 0-10 cm soil depth proved more suitable than 10-20 or 0-20 cm depths for monitoring SQ. Results suggested that soil pH and bulk density were identified as potential early-warning indicators for soil degradation in the study pastures.

Supporting Institution

Çankırı Karatekin University

Thanks

This study is based on the data collected during the doctoral thesis project (Grant number: OF270516D03), which was supported by the Scientific Research Projects Coordination Unit (BAP) of Çankırı Karatekin University between 2016 and 2018. Additional analyses beyond the scope of the original thesis were performed by the author to prepare this article. The author gratefully acknowledges the financial support provided by the BAP Unit of Çankırı Karatekin University. The authors thank Seval Sünal Kavaklıgil for her help with the field work and laboratory analyses and Bayram C Bilgili for his help with Figure 1.

References

  • Abdalla, M., Hastings, A., Chadwick, D.R., Jones, D.L., Evans, C.D., Jones, M.B., Rees, R.M., Smith, P., 2018. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture, Ecosystems and Environment 253: 62–81.
  • Andrews, S., Karlen, D., Cambardella, C., 2004. The soil management assessment framework. Soil Science Society of America Journal 68(6): 1945-1962.
  • Andrews, S., Karlen, D., Mitchell, J., 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment 90(1): 25–45.
  • Andrews, S.S., Carroll, C.R., 2001. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications 11(6): 1573-1585.
  • Arshad, M.A., Coen, G.M., 1992. Characterization of soil quality: Physical and chemical criteria. American Journal of Alternative Agriculture 7(1/2): 25–31.
  • Arshad, M.A., Lowery, B., Grossman, B., 1997. Physical tests for monitoring soil quality. In: Methods For Assessing Soil Quality Vol. 49. Doran, J.W., Jones, A.J. (Eds.). Soil Science Society of America, Inc. Madison, Wisconsin, USA. pp.123-141.
  • Bai, R., Xi, D., He, J., Hu, H., Fang, Y., Zhang, L., 2015. Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biology and Biochemistry 91: 212–221.
  • Biswas, S., Hazra, G.C., Purakayastha, T.J., Saha, N., Mitran, T., Roy, S.S., Basak, N., Mandal, B., 2017. Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma 292: 34–48.
  • Blake, G.R., Hardge, K.H., 1986. Bulk Density. In: Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, Klute, A., (Ed.). American Society of Agronomy-Soil Science Society of America, Madison, Vol 5, pp. 363–375.
  • Bogunovic, I., Kljak, K., Dugan, I., Grbeša, D., Telak, L.J., Duvnjak, M., Kisic, I., Solomun, M.K., Pereira, P., 2022. Grassland management impact on soil degradation and herbage nutritional value in a temperate humid environment. Agriculture 12(7): 921.
  • Budak, M., Gunal, H., Celik, I., Yildiz, H., Acir, N., Acar, M., 2018. Soil quality assesment of upper Tigris basin. Carpathian Journal of Earth and Environmental Sciences 13: 301-316.
  • Cassel, D., Nielsen, D., 1986. Field capacity and available water capacity. In: Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, Klute, A., (Ed.). American Society of Agronomy-Soil Science Society of America, Madison, Vol 5, pp. 901–926.
  • Crepin, L., Johnson, R.L., 1993. Soil sampling and environmental assessment, In: Soil Sampling and Methods of Analysis, Carter, M.R., (Ed.). Lewis Publishers, Boca Raton, pp. 5–18.
  • Dong, S.K., Wen, L., Li, Y.Y., Wang, X.X., Zhu, L., Li, X.Y., 2012. Soil‐quality effects of grassland degradation and restoration on the Qinghai‐Tibetan Plateau. Soil Science Society of America Journal 76: 2256–2264.
  • Dudek, T., Wolański, P., Rogut, K., 2020. The content of macro- and micro minerals in the sward of different types of semi-natural meadows of temperate climate in SE Poland. Agronomy 10(2): 273.
  • Gardi, C., Tomaselli, M., Parisi, V., Petraglia, A., Santini, C., 2002. Soil quality indicators and biodiversity in northern Italian permanent grasslands. European Journal of Soil Biology 38: 103–110.
  • Gee, G., Bauder, J., 1986. Particle-size analysis, In: Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, Klute, A., (Ed.). Vol.5, American Society of Agronomy and Soil Science Society of America, Madison, pp. 383–411.
  • Gilmullina, A., Rumpel, C., Blagodatskaya, E., Chabbi, A., 2020. Management of grasslands by mowing versus grazing–impacts on soil organic matter quality and microbial functioning. Applied Soil Ecology 156: 103701.
  • Gong, D., Wang, Z., Zhang, Y., Wei, B., Zhang, B., Hu, X., Gu, C. 2025. Preliminary study to determine the key limiting ındicator of cropland soil quality on the Tibetan Plateau. Agriculture 15(12): 1252.
  • Hamza, M.A., Anderson, W.K., 2005. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research 82(2): 121-145.
  • Iyigun, C., Türkeş, M., Batmaz, İ., Yozgatligil, C., Purutçuoğlu, V., Koç, E.K., Öztürk, M.Z., 2013. Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and Applied Climatology 114: 95–106.
  • Kairis, O., Aratzioglou, C., Filis, A., Mol, M., 2021. The effect of land management practices on soil quality indicators in Crete. Sustainability 13(15): 8619.
  • Kamarudin, K., 2019. Comparison of soil spatial variability and geostatistical characteristics between different vegetation types in Nara Park (Japan). Master thesis. Kindai University.
  • Kao,P.T., Darcha,T., McGrathc,S.P., Kendalld,N.R., Bussb,H.L.,Warrene, H.,Lee, M.R.F., 2020. Factors influencing elemental micronutrient supply from pasture systems for grazing ruminants. Advances in Agronomy 164:161-219.
  • Karaca, S., Dengiz, O., Demirağ, T., Özkan, B., Dedeoğlu, M., Gülser, F., Sargin, B., Demirkaya, S., Ay, A., 2021. An assessment of pasture soils quality based on multi-indicator weighting approaches in semi-arid ecosystem. Ecological Indicators 121: 107001.
  • Karlen, D.L., Stott, D.E., 1994. A framework for evaluating physical and chemical indicators of soil quality. In: Defining Soil Quality for a Sustainable Environment. Doran, J.W., Coleman, D.C., Bezdicek, D.F., Steaward, B.A., (Eds.). American Society of Agronomy-Soil Science Society of America, Madison, SSSA Special Publication Number 35, pp. 53-72.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distributlon, In: Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, Klute, A., (Ed.). Vol.5, American Society of Agronomy and Soil Science Society of America, Madison, pp. 425–442.
  • Kumaresan, A., Bujarbaruah, K.M., Pathak, K.A., Brajendra, Ramesh, T., 2010. Soil–plant–animal continuum in relation to macro and micro mineral status of dairy cattle in subtropical hill agro ecosystem. Tropical Animal Health and Production 42: 569–577.
  • Kuo, S., 1996. Phosphorus. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA Book Series No. 5. ASA-SSSA Madison WI, USA, pp. 869 - 919.
  • Larson, W.E., Pierce, F.J., 1994. The dynamics of soil quality as a measure of sustainable management. In: Defining Soil Quality for a Sustainable Environment. Doran, J.W., Coleman, D.C., Bezdicek, D.F., Steaward, B.A., (Eds.). American Society of Agronomy-Soil Science Society of America, Madison, SSSA Special Publication Number 35, pp. 37-51.
  • Li, Y., Dong, S., Wen, L., Wang, X., Wu, Y., 2013. Assessing the soil quality of alpine grasslands in the Qinghai-Tibetan Plateau using a modified soil quality index. Environmental Monitoring and Assessment 185: 8011–8022.
  • Lindsay, W.L., Norvell, W.A., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42(3):421–428.
  • Marijanušić, K., Manojlović, M., Bogdanović, D., Čabilovski, R., Lombnaes, P., 2017. Mineral composition of forage crops in respect to dairy cow nutrition. Bulgarian Journal of Agricultural Science 23(2): 204-212.
  • Masters, D.G., White, C.L., 1996. Detection and treatment of mineral nutrition problems in grazing sheep, detection and treatment of mineral nutrition problems in grazing sheep. Canberra, Australia. 195 p. Available at [Access date: 06.07.2025]: https://www.aciar.gov.au/sites/default/files/legacy/node/2211/mn37_pdf_14863.pdf
  • McLean, E.O., 1982. Soil pH and Lime Requirement. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties. Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). Soil Science Society of America. Madison, Wisconsin, USA. pp. 199-224.
  • Mengel, K., 2007. Potassium, In: Handbook of Plant Nutrition, Barker, A., Pilbeam, D., (Eds.). CRC Press, Boca Raton, pp. 91–120.
  • Merhaut, D.J., 2007. Magnesium, In: Handbook of Plant Nutrition, Barker, A. V., Pilbeam, D.J. (Eds.). CRC Press, Boca Raton, pp. 149–171.
  • Moebius-Clune, B.N., van Es, H.M., Idowu, O.J., Schindelbeck, R.R., Kimetu, J.M., Ngoze, S., Lehmann, J., Kinyangi, J.M., 2011. Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agriculture, Ecosystems and Environment 141: 86–99.
  • Mulla, D.J., McBratney, A.B., 2002. Soil spatial variability, In: Soil Physics Companion, Warrick, A.W., (Ed.). CRC Press, Boca Raton, pp. 343–373.
  • Nehrani, S.H., Askari, M.S., Saadat, S., Delavar, M.A., Taneri, M., Holden, N.M., 2020. Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecological Indicators 108: 105770.
  • Nelson, D.W., Sommers, L.E., 1996. Total carbon organic carbon and organic matter. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA Book Series No. 5. ASA-SSSA Madison WI, USA, pp. 961–1010.
  • Ozgöz, E., Akbş, F., Çetin, M., Erşahin, S., Günal, H., 2007. Spatial variability of soil physical properties as affected by different tillage systems. New Zealand Journal of Crop and Horticultural Science 35(1): 1-13.
  • Pansu, M., Gautheyrou, J., 2007. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer Berlin, Heidelberg. 993p.
  • Paz-Kagan, T., Ohana-Levi, N., Herrmann, I., Zaady, E., Henkin, Z., Karnieli, A., 2016. Grazing intensity effects on soil quality: A spatial analysis of a Mediterranean grassland. Catena 146: 100–110.
  • Pierce, F.J., Larson, W.E., Dowdy, R.H., Graham, W.A.P., 1983. Productivity of soils: assessing long-term changes due to erosion. Journal of Soil and Water Conservation 38(1): 39–44.
  • Rahmanipour, F., Marzaioli, R., Bahrami, H.A., Fereidouni, Z., Bandarabadi, S.R., 2014. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators 40: 19–26.
  • Recha, J.W., Olale, K.O., Sila, A.M., Ambaw, G., Radeny, M., Solomon, D., 2022. Measuring soil quality indicators under different climate-smart land uses across East African Climate-Smart Villages. Agronomy 12(2): 530.
  • Rhoades, J.D., 1982. Soluble salts, In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties. Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 167–179.
  • Römheld, V., Nikolic, M., 2007. Iron, In: Handbook of Plant Nutrition, Barker, A. V., Pilbeam, D.J. (Eds.). CRC Press, Boca Raton, pp. 329–350.
  • Sağlam, M., Dengiz, O., 2017. Spatial variability of soil penetration resistance in an alluvial delta plain under different land uses in middle Black Sea Region of Turkey. Archives of Agronomy and Soil Science 63(1): 60-73.
  • Sanad, H., Moussadek, R., Mouhir, L., Oueld Lhaj, M., Dakak, H., El Azhari, H., Zouahri, A., 2024. SQI and geostatistical approach: A case study of the Mnasra Region, Gharb Plain, Morocco. Agronomy 14(6): 1112.
  • Sánchez-Marañón, M., Soriano, M., Delgado, G., Delgado, R., 2002. Soil quality in Mediterranean mountain environments: effects of land use change. Soil Science Society of America Journal 66(3): 948-958.
  • Sánchez-Navarro, A., Gil-Vázquez, J.M., Delgado-Iniesta, M.J., Marín-Sanleandro, P., Blanco-Bernardeau, A., Ortiz-Silla, R., 2015. Establishing an index and identification of limiting parameters for characterizing soil quality in Mediterranean ecosystems. Catena 131: 35–45.
  • Sayar, M. S., Han, Y., Başbağ, M., Gül, İ., Polat, T., 2015. Rangeland improvement and management studies in Southeastern Anatolia Region of Turkey. Pakistan Journal of Agricultural Sciences 52(1): 9-18.
  • Shao, G., Ai, J., Sun, Q., Hou, L., Dong, Y., 2020. Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecological Indicators 115: 106439.
  • Soil Survey Staff, 2014. Keys to soil taxonomy. Government Printing Office, Washington. Available at [Access date: 06.07.2025]: https://nrcs.app.box.com/s/xi57bj6zyo601eokr7v715mkdpeaa81h/file/1147478400323
  • Steffens, M., Kölbl, A., Totsche, K., Kögel-Knabner, I., 2008. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 143: 63–72.
  • Stott, D., 2019. Recommended soil health indicators and associated laboratory procedures. Soil Health Technical Note No. 450-03 76. U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS), Washington, D.C. USA. Available at [Access date: 06.07.2025]: https://www.naptprogram.org/files/napt/publications/method-papers/2019-nrcs-technote-450-03.pdf
  • Sun J., Wang Y., Piao S., Liu M., Han G., Li J., Liang E., Lee T.M., Liu G., Wilkes A., Liu S., Zhao W., Zhou H., Yibeltal M., Berihun M.L., Browning D., Fenta A.A., Tsunekawa A., Brown J., Willms W., Tsubo M. 2022. Toward a sustainable grassland ecosystem worldwide. The Innovation 3(4): 100265.
  • Thomas, C.L., Darch, T., Harris, P., Beaumont, D.A., Haefele, S.M., 2021. The distribution of soil micro-nutrients and the effects on herbage micro-nutrient uptake and yield in three different pasture systems. Agronomy 11(9): 1731.
  • Thomas, G.W., 1982. Exchangeable cations, In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties. Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 159–165.
  • Tisdale, S., Nelson, W., Beaton, J., Havlin, J., 1993. Soil Fertility and Fertilizers, 5th ed. Macmillan Inc., New York. 634p.
  • Whitehead, D.C., 2000. Nutrient elements in grassland: soil-plant-animal relationships, Introduction. In: Nutrient Elements in grassland: soil-plant-animal relationships. Whitehead, D.C. (Ed.). CABI Publishing. pp. 1–14.
  • Wu, C., Liu, G., Huang, C., Liu, Q., 2019. Soil quality assessment in Yellow River Delta : Establishing a minimum data set and fuzzy logic model. Geoderma 334: 82–89.
  • Yu, P., Han, D., Jia, H., 2018. Soil quality assessment under different land uses in an alpine grassland. Catena 171: 280–287.
  • Zhou, H., Yang, X., Zhou, C., Shao, X., Shi, Z., Li, H., Su, H., Qin, R., Chang, T., Hu, X., Yuan, F., Li, S., Zhang, Z., Ma, L., 2023. Alpine grassland degradation and its restoration in the Qinghai–Tibet Plateau. Grasses 2(1): 31-46.
There are 66 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Research Article
Authors

Ülkü Yılmaz 0000-0001-5031-0523

Meriç Çakır 0000-0001-8402-5114

Sabit Erşahin 0000-0003-2463-7893

Submission Date July 6, 2025
Acceptance Date November 25, 2025
Publication Date January 2, 2026
Published in Issue Year 2026 Volume: 15 Issue: 1

Cite

APA Yılmaz, Ü., Çakır, M., & Erşahin, S. (2026). Soil quality as related to sampling depth on semiarid and semihumid pastures. Eurasian Journal of Soil Science, 15(1), 56-73. https://doi.org/10.18393/ejss.1833464