A Hadoop Application for Urban Computing in Smart City
Year 2020,
Volume: 16 Issue: 2, 193 - 201, 30.12.2020
Sevcan Turan
,
Halit Öztekin
Abstract
Data analytics, which is the process of obtaining meaningful information from the rapidly occurring big data, has taken its place among popular topics. According to smart transportation systems, which are part of smart cities, big data is also generated in the field of transportation. Within the scope of this study, a data analytics application will be carried out with the average speed and vehicle count data obtained by the sensor systems installed on the roads for the City Pulse Smart City project which is accessible through the internet. Using the Hadoop open-source framework software, which is popular in data analytics, graphics and information will be obtained for interpretation about the flow of traffic on the road.
Thanks
The authors would like to thank the Open Data Aarhus (ODAA) initiative and CityPulse EU FP7 Project for publishing open datasets.
References
- Aktan, E., “Büyük Veri: Uygulama Alanları, Analitiği ve Güvenlik Boyutu”, Bilgi Yönetimi(2018), 1-22.
- Cuzzocrea, A., Song, I.-Y., & Davis, K., “Analytics over Large-Scale Multidimensional Data:The Big Data Revolution”, DOLAP '11: Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP(2011), 101–104.
- Chen, H., Chiang, R., & Storey, V., “Business Intelligence and Analytics: From Big Data to Big Impact”, Business Intelligence Research, Vol. 36, No. 4 , 1165-1188.
- O'Dea, S., “Volume of data/information created worldwide from 2010 to 2025”, https://www.statista.com/statistics/871513/worldwide-data-created/ [Accessed: 28-Feb-2020].
- Zhu, L., Yu, F. R., Wang, Y., Ning, B.,& Tang, T., “Big Data Analytics in Intelligent Transportation Systems: A Survey”, IEEE Transactions on Intelligent Transportation System(2019), vol 20, 383-398.
- Apache Hadoop, Apache Software Foundation: https://hadoop.apache.org/ [Accessed: 03-Apr-2020].
- Lam, C., “Hadoop in Action”, Stamford: Manning Publications Co(2011).
- Çitçi M. A., Çelik E. D., “Hadoop ve Mapreduce Teknolojisi aracılığıyla Gıda-tabanlı Mobil Uygulamaları için bir Arama Hizmeti”, Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi(2017), 38: 79-94.
- Yılmazel Ö., “Hadoop Üzerinde Ölçeklenebilir Betimleyici İstatistik Uygulamaları”, Nicel Bilimler Dergisi(2019). 1:43-58.
- Darwish T. S. J., Bakar K. A., “Fog Based Intelligent Transportation Big Data Analytics in The Internet of Vehicles Environment: Motivations, Architecture, Challenges, and Critical Issues”, IEEE Access, Access, IEEE(2018), 6:15679-15701.
- Qiu, Y., Zhao, X., Zhang, X., “Optimal Routing for Safe Construction and Demolition Waste Transportation:A CVaR Criterion and Big Data Analytics Approach”, Technical Gazette(2019), 26, 1128-1135.
- Alic, A.S., Almeida J., Aloisio, G., “BIGSEA: A Big Data analytics platform for public transportation”, Future Generation Computer Systems(2019), 243-269.
- Cuzzocrea, A., Nolich, M., Ukovich, W., “A Big-Data-Analytics Framework for Supporting Logistics Problems in Smart-City Environments”, Procedia Computer Science(2019), 159:2589–2597.
- Biuk-Aghai, R.P., Kou, W. T., Fong, S., “Big Data Analytics for Transportation: Problems and Prospects for its Application in China”, IEEE Region 10 Symposium (TENSYMP)(2019), 173-178.
- Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F. and Barnaghi, P., “A Knowledge-Based Approach for Real-Time IoT Data Stream Annotation and Processing”, 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei. 215-222.
- Aysan L., Özbilgin İ.G., “Tek Kart Bilgisayarlar ile Bulut Oluşturarak MapReduce İşlemleri Denemesi”, Bilişim Teknolojileri Dergisi(2015), 8:179-191.
- Yavuz G., Aytekin S., Akçay M., “Apache Hadoop ve Dağıtık Sistemler Üzerindeki Rolü”, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi(2012), 27: 43-54.
- HDFS Default. Apache Hadoop: https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml. [Accessed: 25-Mar-2020].
- YARN. Apache Hadoop: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html. [Accessed: 26-Mar-2020].
Year 2020,
Volume: 16 Issue: 2, 193 - 201, 30.12.2020
Sevcan Turan
,
Halit Öztekin
References
- Aktan, E., “Büyük Veri: Uygulama Alanları, Analitiği ve Güvenlik Boyutu”, Bilgi Yönetimi(2018), 1-22.
- Cuzzocrea, A., Song, I.-Y., & Davis, K., “Analytics over Large-Scale Multidimensional Data:The Big Data Revolution”, DOLAP '11: Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP(2011), 101–104.
- Chen, H., Chiang, R., & Storey, V., “Business Intelligence and Analytics: From Big Data to Big Impact”, Business Intelligence Research, Vol. 36, No. 4 , 1165-1188.
- O'Dea, S., “Volume of data/information created worldwide from 2010 to 2025”, https://www.statista.com/statistics/871513/worldwide-data-created/ [Accessed: 28-Feb-2020].
- Zhu, L., Yu, F. R., Wang, Y., Ning, B.,& Tang, T., “Big Data Analytics in Intelligent Transportation Systems: A Survey”, IEEE Transactions on Intelligent Transportation System(2019), vol 20, 383-398.
- Apache Hadoop, Apache Software Foundation: https://hadoop.apache.org/ [Accessed: 03-Apr-2020].
- Lam, C., “Hadoop in Action”, Stamford: Manning Publications Co(2011).
- Çitçi M. A., Çelik E. D., “Hadoop ve Mapreduce Teknolojisi aracılığıyla Gıda-tabanlı Mobil Uygulamaları için bir Arama Hizmeti”, Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi(2017), 38: 79-94.
- Yılmazel Ö., “Hadoop Üzerinde Ölçeklenebilir Betimleyici İstatistik Uygulamaları”, Nicel Bilimler Dergisi(2019). 1:43-58.
- Darwish T. S. J., Bakar K. A., “Fog Based Intelligent Transportation Big Data Analytics in The Internet of Vehicles Environment: Motivations, Architecture, Challenges, and Critical Issues”, IEEE Access, Access, IEEE(2018), 6:15679-15701.
- Qiu, Y., Zhao, X., Zhang, X., “Optimal Routing for Safe Construction and Demolition Waste Transportation:A CVaR Criterion and Big Data Analytics Approach”, Technical Gazette(2019), 26, 1128-1135.
- Alic, A.S., Almeida J., Aloisio, G., “BIGSEA: A Big Data analytics platform for public transportation”, Future Generation Computer Systems(2019), 243-269.
- Cuzzocrea, A., Nolich, M., Ukovich, W., “A Big-Data-Analytics Framework for Supporting Logistics Problems in Smart-City Environments”, Procedia Computer Science(2019), 159:2589–2597.
- Biuk-Aghai, R.P., Kou, W. T., Fong, S., “Big Data Analytics for Transportation: Problems and Prospects for its Application in China”, IEEE Region 10 Symposium (TENSYMP)(2019), 173-178.
- Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F. and Barnaghi, P., “A Knowledge-Based Approach for Real-Time IoT Data Stream Annotation and Processing”, 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei. 215-222.
- Aysan L., Özbilgin İ.G., “Tek Kart Bilgisayarlar ile Bulut Oluşturarak MapReduce İşlemleri Denemesi”, Bilişim Teknolojileri Dergisi(2015), 8:179-191.
- Yavuz G., Aytekin S., Akçay M., “Apache Hadoop ve Dağıtık Sistemler Üzerindeki Rolü”, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi(2012), 27: 43-54.
- HDFS Default. Apache Hadoop: https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml. [Accessed: 25-Mar-2020].
- YARN. Apache Hadoop: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html. [Accessed: 26-Mar-2020].