Research Article
BibTex RIS Cite

Investigating the biomechanics of the biceps brachii muscle during dumbbell curl exercise: A comprehensive approach

Year 2023, , 209 - 219, 20.12.2023
https://doi.org/10.26701/ems.1348070

Abstract

Investigation of the mechanical behavior of the biceps brachii (BB) muscle at different dynamic forces is essential to improve training techniques, prevent sports injuries and optimize rehabilitation results. In previous studies, researchers studied mechanical changes during muscle contraction using various mathematical methods and simulation models. The models adopted by the majority of these studies assumed a constant value for muscle force. However, variable muscle force has different effects on muscle mechanics. In this study, an inverse dynamic simulation model was initially utilized to determine the dynamic muscle forces generated in the BB while performing the dumbbell curl exercise with 5 kg and 10 kg weights. Subsequently, the finite element method (FEM) was used to calculate the stress and strain changes experienced by BB as a consequence of the applied forces. Moreover, simultaneous analysis through electromyography (EMG) was carried out to investigate muscle contraction during the dumbbell curl exercise. Consequently, it was concluded that the average BB force during the dumbbell curl exercise with 5 kg and 10 kg weights was 433.9 N and 695.0 N, respectively. The maximum stresses in the BB during exercise were calculated to be 960.5 Pa and 1484.9 Pa, respectively. Additionally, the maximum displacements were determined to be 102.30 μm and 158.28 μm, respectively. According to the findings of muscle force 100% increase in dumbbell weight increases the maximum muscle force by 83.13% and the average muscle force by 60.17%. Therefore, it is understood that there was no linear correlation between weight gain and muscle force.

Supporting Institution

Istanbul Arel University

Project Number

2022-ST-002

Thanks

This work was supported by the Istanbul Arel University Scientific Research Projects Office under project number: 2022-ST-002. I would like to acknowledge the technical support provided by ArelMED-I Application and Research Center of Istanbul Arel University related to the digital measurements. Last but not least, I am thankful to my spiritual brother Dr. Kasim SERBEST for being a steadfast source of support and encouragement throughout the preparation of this paper.

References

  • [1] Jarmey, C. (2018). The concise book of muscles. North Atlantic Books.
  • [2] Benes, M., Kachlik, D., Lev, D., & Kunc, V. (2022). Accessory heads of the biceps brachii muscle: A systematic review and meta‐analysis. Journal of Anatomy, 241(2): 461-477. doi:10.1111/joa.13666.
  • [3] Eberstein, A. R. T. H. U. R., & Goodgold, J. O. S. E. P. H. (1968). Slow and fast twitch fibers in human skeletal muscle. American Journal of Physiology-Legacy Content, 215(3): 535-541. doi:10.1152/ajplegacy.1968.215.3.535.
  • [4] Allen, G. M., McKenzie, D. K., & Gandevia, S. C. (1998). Twitch interpolation of the elbow flexor muscles at high forces. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 21(3): 318-328. doi:10.1002/(SICI)1097-4598(199803)21:3%3C318::AID-MUS5%3E3.0.CO;2-D.
  • [5] McGinnis, P. M. (2013). Biomechanics of sport and exercise. Human Kinetics.
  • [6] Bussey, M. (2002). Sports biomechanics: Reducing injury and improving performance. Routledge.
  • [7] Landin, D., Thompson, M., & Jackson, M. R. (2017). Actions of the biceps brachii at the shoulder: a review. Journal of Clinical Medicine Research, 9(8): 667. doi:10.14740/jocmr2901w.
  • [8] Asadi Dereshgi, H., Serbest, K., Balik, B., Sahin, S. N. (2022). Stress-strain response of muscle fibers in biceps brachii under dynamic force: An analysis of biceps curl exercise. Journal of Polytechnic, 25: 1777–1783. doi:10.2339/politeknik.1025328.
  • [9] Asadi Dereshgi, H., Serbest, K., Şahin, S. N., Balik, B. (2022). A mechanical model and stress-strain response of the biceps brachii under static load. European Mechanical Science, 6: 27–31. doi:10.26701/ems.1015772.
  • [10] Lovecchio, N., Maiorano, C., Naddeo, F., Sforza, C. (2010). Biceps brachii muscle fatigue during isometric contraction: Is antagonist muscle fatigue a key factor?. The Open Sports Medicine Journal, 6: 1–8. doi:10.2174/1874387001307010001.
  • [11] Sgroi, T. A. (2021). Post-operative Rehabilitation: Biceps Tenodesis. The Management of Biceps Pathology: A Clinical Guide from the Shoulder to the Elbow, 235-241. doi:10.1007/978-3-030-63019-5_19.
  • [12] Jhan, T., Zutshi, K., & Sethi, A. (2021). Effect of Vibration on Delayed Onset Muscle Soreness before and after the Eccentric Exercise in Biceps Brachii Muscle of Females. International Journal of Preventive Cardiology, 1(1): 4-12.
  • [13] Fleck, S. J., & Kraemer, W. (2014). Designing resistance training programs, 4E. Human Kinetics.
  • [14] Davies, J., Parker, D. F., Rutherford, O. M., & Jones, D. A. (1988). Changes in strength and cross sectional area of the elbow flexors as a result of isometric strength training. European journal of applied physiology and occupational physiology, 57: 667-670. doi:10.1007/bf01075986.
  • [15] Lundin, P. (1985). Plyometrics: A review of plyometric training. Strength & Conditioning Journal, 7(3): 69-76.
  • [16] Mike, J., Kerksick, C. M., & Kravitz, L. (2015). How to incorporate eccentric training into a resistance training program. Strength & Conditioning Journal, 37(1): 5-17. doi:10.1519/ssc.0000000000000114.
  • [17] Peterson, M., Rhea, M., Alvar, B. (2004). Maximizing strength development in athletes. Journal of Strength and Conditioning Research, 18: 377–382. doi:10.1519/00124278-200405000-00031.
  • [18] Schoenfeld, B. J., Peterson, M. D., Ogborn, D., Contreras, B., & Sonmez, G. T. (2015). Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. The Journal of Strength & Conditioning Research, 29(10): 2954-2963. doi:10.1519/jsc.0000000000000958.
  • [19] Schoenfeld, B. J., Contreras, B., Krieger, J., Grgic, J., Delcastillo, K., Belliard, R., & Alto, A. (2019). Resistance training volume enhances muscle hypertrophy but not strength in trained men. Medicine and science in sports and exercise, 51(1): 94. doi:10.1249/mss.0000000000001764.
  • [20] Steele, J., Fisher, J., Giessing, J., & Gentil, P. (2017). Clarity in reporting terminology and definitions of set endpoints in resistance training. Muscle & nerve, 56(3): 368-374. doi:10.1002/mus.25557.
  • [21] Wakahara, T., Miyamoto, N., Sugisaki, N., Murata, K., Kanehisa, H., Kawakami, Y., ... & Yanai, T. (2012). Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. European journal of applied physiology, 112: 1569-1576. doi:10.1007/s00421-011-2121-y.
  • [22] Wilk, M., Stastny, P., Golas, A., Nawrocka, M., Jelen, K., Zajac, A., & Tufano, J. (2018). Physiological responses to different neuromuscular movement task during eccentric bench press. Neuroendocrinology Letters, 39(1): 26-32.
  • [23] Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., ... & Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. European journal of applied physiology, 88: 50-60. doi:10.1007/s00421-002-0681-6.
  • [24] Folland, J. P., & Williams, A. G. (2007). Morphological and neurological contributions to increased strength. Sports medicine, 37: 145-168. doi: 10.2165/00007256-200737020-00004.
  • [25] Romiti, M., Finch, C. F., & Gabbe, B. (2008). A prospective cohort study of the incidence of injuries among junior Australian football players: evidence for an effect of playing-age level. British journal of sports medicine, 42(6): 441-446. doi:10.1136/bjsm.2008.051417.
  • [26] Wernbom, M., Augustsson, J., & Thomeé, R. (2007). The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports medicine, 37: 225-264. doi:10.2165/00007256-200737030-00004.
  • [27] Liao, F., Zhang, X., Cao, C., Hung, I. Y. J., Chen, Y., & Jan, Y. K. (2021). Effects of muscle fatigue and recovery on complexity of surface electromyography of Biceps Brachii. Entropy, 23(8): 1036. doi:10.3390/e23081036.
  • [28] Mattiello-Sverzut, A. C., & Martins, E. J. (2023). Does the early phase of aging affect the morphology of biceps brachii and torque and total work of elbow flexors in healthy volunteers?. Brazilian Journal of Medical and Biological Research, 56. doi:10.1590/1414-431x2023e12202.
  • [29] Li, S., Li, H., Hu, Y., Zhu, S., Xu, Z., Zhang, Q., ... & Xu, J. (2020). Ultrasound for measuring the cross-sectional area of biceps brachii muscle in sarcopenia. International Journal of Medical Sciences, 17(18): 2947. doi:10.7150/ijms.49637.
  • [30] Nuzzo, J. L. (2023). Narrative review of sex differences in muscle strength, endurance, activation, size, fiber type, and strength training participation rates, preferences, motivations, injuries, and neuromuscular adaptations. Journal of strength and conditioning research, 37(2): 494-536. doi:10.1519/jsc.0000000000004329.
  • [31] Barakat, C., Barroso, R., Alvarez, M., Rauch, J., Miller, N., Bou-Sliman, A., & De Souza, E. O. (2019). The effects of varying glenohumeral joint angle on acute volume load, muscle activation, swelling, and echo-intensity on the biceps brachii in resistance-trained individuals. Sports, 7(9): 204. doi:10.3390/sports7090204.
  • [32] Pedrosa, G. F., Simões, M. G., Figueiredo, M. O., Lacerda, L. T., Schoenfeld, B. J., Lima, F. V., ... & Diniz, R. C. (2023). Training in the initial range of motion promotes greater muscle adaptations than at Final in the arm curl. Sports, 11(2): 39. doi:10.3390/sports11020039.
  • [33] Bagchi, A., & Raizada, S. (2019). A comparative electromyographical analysis of biceps brachii and brachioradialis during eight different types of biceps curl. Indian Journal of Public Health, 10(5): 730-735. doi:10.5958/0976-5506.2019.01098.2.
  • [34] Girard, O., Mariotti-Nesurini, L., & Malatesta, D. (2022). Acute performance and physiological responses to upper-limb multi-set exercise to failure: Effects of external resistance and systemic hypoxia. European Journal of Sport Science, 22(12): 1877-1888. doi:10.1080/17461391.2021.2002951.
  • [35] Serbest, K. (2022). A biomechanical analysis of dumbbell curl and investigation of the effects of increasing loads on biceps brachii using a finite element model. doi: 10.21203/rs.3.rs-1263844/v1.
  • [36] Watanabe, K., Kouzaki, M., & Moritani, T. (2015). Spatial EMG potential distribution of biceps brachii muscle during resistance training and detraining. European journal of applied physiology, 115: 2661-2670. doi:10.1007/s00421-015-3237-2.
  • [37] Hwang, H. J., Chung, W. H., Song, J. H., Lim, J. K., & Kim, H. S. (2016). Prediction of biceps muscle fatigue and force using electromyography signal analysis for repeated isokinetic dumbbell curl exercise. Journal of Mechanical Science and Technology, 30: 5329-5336. doi:10.1007/s12206-016-1053-1.
  • [38] Fu, B., & Freeborn, T. J. (2018). Biceps tissue bioimpedance changes from isotonic exercise-induced fatigue at different intensities. Biomedical Physics & Engineering Express, 4(2): 025037. doi:10.1088/2057-1976/aaabed.
  • [39] Li, D., Huang, L., Wen, Y., Gao, Y., Vasić, Ž. L., Cifrek, M., & Du, M. (2020). Analysis of electrical impedance myography electrodes configuration for local muscle fatigue evaluation based on finite element method. IEEE Access, 8: 172233-172243. doi:10.1109/access.2020.3025150.
  • [40] Coratella, G., Tornatore, G., Longo, S., Toninelli, N., Padovan, R., Esposito, F., & Cè, E. (2023). Biceps Brachii and Brachioradialis Excitation in Biceps Curl Exercise: Different Handgrips, Different Synergy. Sports, 11(3): 64. doi:10.3390/sports11030064.
  • [41] Winters, J. M., & Woo, S. L. (Eds.). (2012). Multiple muscle systems: biomechanics and movement organization. Springer Science & Business Media.
  • [42] Gordon, D., Robertson, E., Caldwell, G. E., Hamill, J., Kamen, G., Whittlesey, S. N. (2004). Research methods in biomechanics. Human Kinetics, Champaign.
  • [43] Chandler, R. F., Clauser, C. E., McConville, J. T., Reynolds, H. M., Young, J. W. (1975). Investigation of inertial properties of the human body. Aerospace Medical Research Laboratory, Technical Report.
  • [44] Agyapong-Badu, S., Warner, M., Samuel, D., Stokes, M. (2016). Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Archives of Gerontology and Geriatrics, 62: 59-67. doi:10.1016/j.archger.2015.09.011.
  • [45] Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C., Guendelman, E., Thelen, E. D. G. (2007). OpenSim: Open-Source Software to Create and Analyze Dynamis Simulations of Movement. IEEE Transactions on Biomedical Engineering, 54: 1940-1950. doi:10.1109/TBME.2007.901024.
  • [46] Tozeren, A. (2000). Human Body Dynamics Classical Mechanics and Human Movement. New York: Springer-Verlag.
  • [47] Jamshidi, N., Rostami, M., Najarian, S., Menjah, M. B., Saadatnia, M., Firooz, S. (2009). Modelling of human walking to optimise the function of ankle-foot orthosis in Guillan-Barre patients with drop foot. Singapore Med J, 50(4): 412–417.
  • [48] Khushaba, R. N., Kodagoda, S., Takruri, M., & Dissanayake, G. (2012). Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Systems with Applications, 39(12): 10731-10738. doi: 10.1016/j.eswa.2012.02.192.
  • [49] Ford, J. M. (2013). Skeletal Muscle Contraction Simulation: A Comparison in Modeling. Ph.D. thesis, University of South Florida.
  • [50] Gherasim, D. M., Arghir, M. (2021). Study of the Free Vibrations Over the Muscular System of the Human Body. Part I: Mechanical Characteristics of the Left Deltoid. Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, and Engineering, 64(1): 123-128.
  • [51] Modi, V., Fulton, L., Jacobson, A., Sueda, S., Levin, D. I. W. (2020). EMU: Efficient muscle simulation in deformation space. Computer Graphics Forum, 40: 234–248. doi:10.1111/cgf.14185.
  • [52] Teran, J., Blemker, S., Hing, V. N. T., Fedkiw, R. (2003, July). Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 68-74).
  • [53] Asadi Dereshgi, H., Serbest, K. (2022). A finite element model of the deltoid muscle and biomechanical analysis of the standing dumbbell fly for shoulder exercises. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44: 439. doi:10.1007/s40430-022-03745-y.
  • [54] Cilli, M., Serbest, K., Kayaoglu, E. (2021). The effect of body weight on joint torques in teenagers: Investigation of sit-to-stand movement. Clinical Biomechanics, 83: 1-6. doi:10.1016/j.clinbiomech.2021.105288.
  • [55] Serbest, K., Berisha, M., Cilli, M. (2018). Dynamic analysis of three different high bar dismounts in the Simmechanıcs environment. Journal of Mechanics in Medicine and Biology, 18: 1-11. doi:10.1142/S0219519418500306.
  • [56] Bryanton, M. A., Kennedy, M. D., Carey, J. P., Chiu, L. Z. F. (2012). Effect of Squat Depth and Barbell Load on Relative Muscular Effort in Squatting. Journal of Strength and Conditioning Research, 26: 2820–2828. doi:10.1519/jsc.0b013e31826791a7.
  • [57] Leedham, J. S., Dowling, J. J. (1995). Force-length, torque-angle and EMG-joint angle relationships of the human in vivo biceps brachii. European Journal of Applied Physiology and Occupational Physiology, 70: 421–426. doi:10.1007/bf00618493.
  • [58] Chatfield, L. T., Pretty, C. G., Fortune, B. C., McKenzie, L. R., Whitwham, G. H., & Hayes, M. P. (2021). Estimating voluntary elbow torque from biceps brachii electromyography using a particle filter. Biomedical Signal Processing and Control, 66: 102475. doi:10.1016/j.bspc.2021.102475.
  • [59] Bailey, C. A., Yoon, S., & Côté, J. N. (2021). Relative variability in muscle activation amplitude, muscle oxygenation, and muscle thickness: Changes with dynamic low-load elbow flexion fatigue and relationships in young and older females. Journal of Electromyography and Kinesiology, 59: 102553. doi:10.1016/j.jelekin.2021.102553.
  • [60] Mechtenberg, M., Grimmelsmann, N., Meyer, H. G., & Schneider, A. (2022). Manual and semi-automatic determination of elbow angle-independent parameters for a model of the biceps brachii distal tendon based on ultrasonic imaging. Plos one, 17(10): e0275128. doi:10.1371/journal.pone.0275128.
  • [61] Stragier, S., Baudry, S., Carpentier, A., & Duchateau, J. (2019). Efficacy of a new strength training design: the 3/7 method. European journal of applied physiology, 119: 1093-1104. doi:10.1007/s00421-019-04099-5.
  • [62] Stokes, T., Tripp, T. R., Murphy, K., Morton, R. W., Oikawa, S. Y., Lam Choi, H., ... & Phillips, S. M. (2021). Methodological considerations for and validation of the ultrasonographic determination of human skeletal muscle hypertrophy and atrophy. Physiological reports, 9(1): e14683. doi:10.14814/phy2.14683.
Year 2023, , 209 - 219, 20.12.2023
https://doi.org/10.26701/ems.1348070

Abstract

Project Number

2022-ST-002

References

  • [1] Jarmey, C. (2018). The concise book of muscles. North Atlantic Books.
  • [2] Benes, M., Kachlik, D., Lev, D., & Kunc, V. (2022). Accessory heads of the biceps brachii muscle: A systematic review and meta‐analysis. Journal of Anatomy, 241(2): 461-477. doi:10.1111/joa.13666.
  • [3] Eberstein, A. R. T. H. U. R., & Goodgold, J. O. S. E. P. H. (1968). Slow and fast twitch fibers in human skeletal muscle. American Journal of Physiology-Legacy Content, 215(3): 535-541. doi:10.1152/ajplegacy.1968.215.3.535.
  • [4] Allen, G. M., McKenzie, D. K., & Gandevia, S. C. (1998). Twitch interpolation of the elbow flexor muscles at high forces. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 21(3): 318-328. doi:10.1002/(SICI)1097-4598(199803)21:3%3C318::AID-MUS5%3E3.0.CO;2-D.
  • [5] McGinnis, P. M. (2013). Biomechanics of sport and exercise. Human Kinetics.
  • [6] Bussey, M. (2002). Sports biomechanics: Reducing injury and improving performance. Routledge.
  • [7] Landin, D., Thompson, M., & Jackson, M. R. (2017). Actions of the biceps brachii at the shoulder: a review. Journal of Clinical Medicine Research, 9(8): 667. doi:10.14740/jocmr2901w.
  • [8] Asadi Dereshgi, H., Serbest, K., Balik, B., Sahin, S. N. (2022). Stress-strain response of muscle fibers in biceps brachii under dynamic force: An analysis of biceps curl exercise. Journal of Polytechnic, 25: 1777–1783. doi:10.2339/politeknik.1025328.
  • [9] Asadi Dereshgi, H., Serbest, K., Şahin, S. N., Balik, B. (2022). A mechanical model and stress-strain response of the biceps brachii under static load. European Mechanical Science, 6: 27–31. doi:10.26701/ems.1015772.
  • [10] Lovecchio, N., Maiorano, C., Naddeo, F., Sforza, C. (2010). Biceps brachii muscle fatigue during isometric contraction: Is antagonist muscle fatigue a key factor?. The Open Sports Medicine Journal, 6: 1–8. doi:10.2174/1874387001307010001.
  • [11] Sgroi, T. A. (2021). Post-operative Rehabilitation: Biceps Tenodesis. The Management of Biceps Pathology: A Clinical Guide from the Shoulder to the Elbow, 235-241. doi:10.1007/978-3-030-63019-5_19.
  • [12] Jhan, T., Zutshi, K., & Sethi, A. (2021). Effect of Vibration on Delayed Onset Muscle Soreness before and after the Eccentric Exercise in Biceps Brachii Muscle of Females. International Journal of Preventive Cardiology, 1(1): 4-12.
  • [13] Fleck, S. J., & Kraemer, W. (2014). Designing resistance training programs, 4E. Human Kinetics.
  • [14] Davies, J., Parker, D. F., Rutherford, O. M., & Jones, D. A. (1988). Changes in strength and cross sectional area of the elbow flexors as a result of isometric strength training. European journal of applied physiology and occupational physiology, 57: 667-670. doi:10.1007/bf01075986.
  • [15] Lundin, P. (1985). Plyometrics: A review of plyometric training. Strength & Conditioning Journal, 7(3): 69-76.
  • [16] Mike, J., Kerksick, C. M., & Kravitz, L. (2015). How to incorporate eccentric training into a resistance training program. Strength & Conditioning Journal, 37(1): 5-17. doi:10.1519/ssc.0000000000000114.
  • [17] Peterson, M., Rhea, M., Alvar, B. (2004). Maximizing strength development in athletes. Journal of Strength and Conditioning Research, 18: 377–382. doi:10.1519/00124278-200405000-00031.
  • [18] Schoenfeld, B. J., Peterson, M. D., Ogborn, D., Contreras, B., & Sonmez, G. T. (2015). Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. The Journal of Strength & Conditioning Research, 29(10): 2954-2963. doi:10.1519/jsc.0000000000000958.
  • [19] Schoenfeld, B. J., Contreras, B., Krieger, J., Grgic, J., Delcastillo, K., Belliard, R., & Alto, A. (2019). Resistance training volume enhances muscle hypertrophy but not strength in trained men. Medicine and science in sports and exercise, 51(1): 94. doi:10.1249/mss.0000000000001764.
  • [20] Steele, J., Fisher, J., Giessing, J., & Gentil, P. (2017). Clarity in reporting terminology and definitions of set endpoints in resistance training. Muscle & nerve, 56(3): 368-374. doi:10.1002/mus.25557.
  • [21] Wakahara, T., Miyamoto, N., Sugisaki, N., Murata, K., Kanehisa, H., Kawakami, Y., ... & Yanai, T. (2012). Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. European journal of applied physiology, 112: 1569-1576. doi:10.1007/s00421-011-2121-y.
  • [22] Wilk, M., Stastny, P., Golas, A., Nawrocka, M., Jelen, K., Zajac, A., & Tufano, J. (2018). Physiological responses to different neuromuscular movement task during eccentric bench press. Neuroendocrinology Letters, 39(1): 26-32.
  • [23] Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., ... & Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. European journal of applied physiology, 88: 50-60. doi:10.1007/s00421-002-0681-6.
  • [24] Folland, J. P., & Williams, A. G. (2007). Morphological and neurological contributions to increased strength. Sports medicine, 37: 145-168. doi: 10.2165/00007256-200737020-00004.
  • [25] Romiti, M., Finch, C. F., & Gabbe, B. (2008). A prospective cohort study of the incidence of injuries among junior Australian football players: evidence for an effect of playing-age level. British journal of sports medicine, 42(6): 441-446. doi:10.1136/bjsm.2008.051417.
  • [26] Wernbom, M., Augustsson, J., & Thomeé, R. (2007). The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports medicine, 37: 225-264. doi:10.2165/00007256-200737030-00004.
  • [27] Liao, F., Zhang, X., Cao, C., Hung, I. Y. J., Chen, Y., & Jan, Y. K. (2021). Effects of muscle fatigue and recovery on complexity of surface electromyography of Biceps Brachii. Entropy, 23(8): 1036. doi:10.3390/e23081036.
  • [28] Mattiello-Sverzut, A. C., & Martins, E. J. (2023). Does the early phase of aging affect the morphology of biceps brachii and torque and total work of elbow flexors in healthy volunteers?. Brazilian Journal of Medical and Biological Research, 56. doi:10.1590/1414-431x2023e12202.
  • [29] Li, S., Li, H., Hu, Y., Zhu, S., Xu, Z., Zhang, Q., ... & Xu, J. (2020). Ultrasound for measuring the cross-sectional area of biceps brachii muscle in sarcopenia. International Journal of Medical Sciences, 17(18): 2947. doi:10.7150/ijms.49637.
  • [30] Nuzzo, J. L. (2023). Narrative review of sex differences in muscle strength, endurance, activation, size, fiber type, and strength training participation rates, preferences, motivations, injuries, and neuromuscular adaptations. Journal of strength and conditioning research, 37(2): 494-536. doi:10.1519/jsc.0000000000004329.
  • [31] Barakat, C., Barroso, R., Alvarez, M., Rauch, J., Miller, N., Bou-Sliman, A., & De Souza, E. O. (2019). The effects of varying glenohumeral joint angle on acute volume load, muscle activation, swelling, and echo-intensity on the biceps brachii in resistance-trained individuals. Sports, 7(9): 204. doi:10.3390/sports7090204.
  • [32] Pedrosa, G. F., Simões, M. G., Figueiredo, M. O., Lacerda, L. T., Schoenfeld, B. J., Lima, F. V., ... & Diniz, R. C. (2023). Training in the initial range of motion promotes greater muscle adaptations than at Final in the arm curl. Sports, 11(2): 39. doi:10.3390/sports11020039.
  • [33] Bagchi, A., & Raizada, S. (2019). A comparative electromyographical analysis of biceps brachii and brachioradialis during eight different types of biceps curl. Indian Journal of Public Health, 10(5): 730-735. doi:10.5958/0976-5506.2019.01098.2.
  • [34] Girard, O., Mariotti-Nesurini, L., & Malatesta, D. (2022). Acute performance and physiological responses to upper-limb multi-set exercise to failure: Effects of external resistance and systemic hypoxia. European Journal of Sport Science, 22(12): 1877-1888. doi:10.1080/17461391.2021.2002951.
  • [35] Serbest, K. (2022). A biomechanical analysis of dumbbell curl and investigation of the effects of increasing loads on biceps brachii using a finite element model. doi: 10.21203/rs.3.rs-1263844/v1.
  • [36] Watanabe, K., Kouzaki, M., & Moritani, T. (2015). Spatial EMG potential distribution of biceps brachii muscle during resistance training and detraining. European journal of applied physiology, 115: 2661-2670. doi:10.1007/s00421-015-3237-2.
  • [37] Hwang, H. J., Chung, W. H., Song, J. H., Lim, J. K., & Kim, H. S. (2016). Prediction of biceps muscle fatigue and force using electromyography signal analysis for repeated isokinetic dumbbell curl exercise. Journal of Mechanical Science and Technology, 30: 5329-5336. doi:10.1007/s12206-016-1053-1.
  • [38] Fu, B., & Freeborn, T. J. (2018). Biceps tissue bioimpedance changes from isotonic exercise-induced fatigue at different intensities. Biomedical Physics & Engineering Express, 4(2): 025037. doi:10.1088/2057-1976/aaabed.
  • [39] Li, D., Huang, L., Wen, Y., Gao, Y., Vasić, Ž. L., Cifrek, M., & Du, M. (2020). Analysis of electrical impedance myography electrodes configuration for local muscle fatigue evaluation based on finite element method. IEEE Access, 8: 172233-172243. doi:10.1109/access.2020.3025150.
  • [40] Coratella, G., Tornatore, G., Longo, S., Toninelli, N., Padovan, R., Esposito, F., & Cè, E. (2023). Biceps Brachii and Brachioradialis Excitation in Biceps Curl Exercise: Different Handgrips, Different Synergy. Sports, 11(3): 64. doi:10.3390/sports11030064.
  • [41] Winters, J. M., & Woo, S. L. (Eds.). (2012). Multiple muscle systems: biomechanics and movement organization. Springer Science & Business Media.
  • [42] Gordon, D., Robertson, E., Caldwell, G. E., Hamill, J., Kamen, G., Whittlesey, S. N. (2004). Research methods in biomechanics. Human Kinetics, Champaign.
  • [43] Chandler, R. F., Clauser, C. E., McConville, J. T., Reynolds, H. M., Young, J. W. (1975). Investigation of inertial properties of the human body. Aerospace Medical Research Laboratory, Technical Report.
  • [44] Agyapong-Badu, S., Warner, M., Samuel, D., Stokes, M. (2016). Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Archives of Gerontology and Geriatrics, 62: 59-67. doi:10.1016/j.archger.2015.09.011.
  • [45] Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C., Guendelman, E., Thelen, E. D. G. (2007). OpenSim: Open-Source Software to Create and Analyze Dynamis Simulations of Movement. IEEE Transactions on Biomedical Engineering, 54: 1940-1950. doi:10.1109/TBME.2007.901024.
  • [46] Tozeren, A. (2000). Human Body Dynamics Classical Mechanics and Human Movement. New York: Springer-Verlag.
  • [47] Jamshidi, N., Rostami, M., Najarian, S., Menjah, M. B., Saadatnia, M., Firooz, S. (2009). Modelling of human walking to optimise the function of ankle-foot orthosis in Guillan-Barre patients with drop foot. Singapore Med J, 50(4): 412–417.
  • [48] Khushaba, R. N., Kodagoda, S., Takruri, M., & Dissanayake, G. (2012). Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Systems with Applications, 39(12): 10731-10738. doi: 10.1016/j.eswa.2012.02.192.
  • [49] Ford, J. M. (2013). Skeletal Muscle Contraction Simulation: A Comparison in Modeling. Ph.D. thesis, University of South Florida.
  • [50] Gherasim, D. M., Arghir, M. (2021). Study of the Free Vibrations Over the Muscular System of the Human Body. Part I: Mechanical Characteristics of the Left Deltoid. Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, and Engineering, 64(1): 123-128.
  • [51] Modi, V., Fulton, L., Jacobson, A., Sueda, S., Levin, D. I. W. (2020). EMU: Efficient muscle simulation in deformation space. Computer Graphics Forum, 40: 234–248. doi:10.1111/cgf.14185.
  • [52] Teran, J., Blemker, S., Hing, V. N. T., Fedkiw, R. (2003, July). Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 68-74).
  • [53] Asadi Dereshgi, H., Serbest, K. (2022). A finite element model of the deltoid muscle and biomechanical analysis of the standing dumbbell fly for shoulder exercises. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44: 439. doi:10.1007/s40430-022-03745-y.
  • [54] Cilli, M., Serbest, K., Kayaoglu, E. (2021). The effect of body weight on joint torques in teenagers: Investigation of sit-to-stand movement. Clinical Biomechanics, 83: 1-6. doi:10.1016/j.clinbiomech.2021.105288.
  • [55] Serbest, K., Berisha, M., Cilli, M. (2018). Dynamic analysis of three different high bar dismounts in the Simmechanıcs environment. Journal of Mechanics in Medicine and Biology, 18: 1-11. doi:10.1142/S0219519418500306.
  • [56] Bryanton, M. A., Kennedy, M. D., Carey, J. P., Chiu, L. Z. F. (2012). Effect of Squat Depth and Barbell Load on Relative Muscular Effort in Squatting. Journal of Strength and Conditioning Research, 26: 2820–2828. doi:10.1519/jsc.0b013e31826791a7.
  • [57] Leedham, J. S., Dowling, J. J. (1995). Force-length, torque-angle and EMG-joint angle relationships of the human in vivo biceps brachii. European Journal of Applied Physiology and Occupational Physiology, 70: 421–426. doi:10.1007/bf00618493.
  • [58] Chatfield, L. T., Pretty, C. G., Fortune, B. C., McKenzie, L. R., Whitwham, G. H., & Hayes, M. P. (2021). Estimating voluntary elbow torque from biceps brachii electromyography using a particle filter. Biomedical Signal Processing and Control, 66: 102475. doi:10.1016/j.bspc.2021.102475.
  • [59] Bailey, C. A., Yoon, S., & Côté, J. N. (2021). Relative variability in muscle activation amplitude, muscle oxygenation, and muscle thickness: Changes with dynamic low-load elbow flexion fatigue and relationships in young and older females. Journal of Electromyography and Kinesiology, 59: 102553. doi:10.1016/j.jelekin.2021.102553.
  • [60] Mechtenberg, M., Grimmelsmann, N., Meyer, H. G., & Schneider, A. (2022). Manual and semi-automatic determination of elbow angle-independent parameters for a model of the biceps brachii distal tendon based on ultrasonic imaging. Plos one, 17(10): e0275128. doi:10.1371/journal.pone.0275128.
  • [61] Stragier, S., Baudry, S., Carpentier, A., & Duchateau, J. (2019). Efficacy of a new strength training design: the 3/7 method. European journal of applied physiology, 119: 1093-1104. doi:10.1007/s00421-019-04099-5.
  • [62] Stokes, T., Tripp, T. R., Murphy, K., Morton, R. W., Oikawa, S. Y., Lam Choi, H., ... & Phillips, S. M. (2021). Methodological considerations for and validation of the ultrasonographic determination of human skeletal muscle hypertrophy and atrophy. Physiological reports, 9(1): e14683. doi:10.14814/phy2.14683.
There are 62 citations in total.

Details

Primary Language English
Subjects Biomechanical Engineering, Tissue Engineering
Journal Section Research Article
Authors

Hamid Asadi Dereshgi 0000-0002-8500-6625

Project Number 2022-ST-002
Publication Date December 20, 2023
Acceptance Date September 22, 2023
Published in Issue Year 2023

Cite

APA Asadi Dereshgi, H. (2023). Investigating the biomechanics of the biceps brachii muscle during dumbbell curl exercise: A comprehensive approach. European Mechanical Science, 7(4), 209-219. https://doi.org/10.26701/ems.1348070

Dergi TR Dizin'de Taranmaktadır.

Flag Counter