Year 2022,
Volume: 6 Issue: 1, 58 - 67, 20.03.2022
Mustafa Albayrak
,
Mustafa Gür
,
Mete Onur Kaman
References
- [1] Cheng, X., Zhang, J., Bao, J., Zeng, B., Cheng, Y., Hu, R. (2018). Low-velocity impact performance and effect factor analysis of scarf-repaired composite laminates. International Journal of Impact Engineering, vol.111, pp. 85-93.
- [2] Ivañez, I., Garcia-Castillo, S. K., Sanchez-Saez, S., Barbero, E. (2019). Analysis of the impact location on damage tolerance of bonded-repaired composite laminates. Polymer Testing, vol.78, 106000.
- [3] Tie, Y., Hou, Y., Li, C., Meng, L., Sapanathan, T., Rachik, M. (2020). Optimization for maximizing the impact-resistance of patch repaired CFRP laminates using a surrogate-based model. International Journal of Mechanical Sciences, vol.172, 105407.
- [4] Kashfuddoja, M., Ramji, M. (2014). Design of optimum patch shape and size for bonded repair on damaged Carbon fibre reinforced polymer panels. Materials and Design (1980-2015), vol.54, pp. 174-183.
- [5] Kara, M., Uyaner, M., Avci, A. (2015). Repairing impact damaged fiber reinforced composite pipes by external wrapping with composite patches. Composite Structures, vol.123, pp. 1-8.
- [6] Andrew, J. J., Arumugam, V., Saravanakumar, K., Dhakal, H. N., Santulli, C. (2015). Compression after impact strength of repaired GFRP composite laminates under repeated impact loading. Composite structures, vol.133, pp. 911-920.
- [7] Coelho, S. R. M., Reis, P. N. B., Ferreira, J. A. M., Pereira, A. M. (2017). Effects of external patch configuration on repaired composite laminates subjected to multi-impacts. Composite Structures, vol.168, pp. 259-265.
- [8] Tie, Y., Hou, Y., Li, C., Zhou, X., Sapanathan, T., Rachik, M. (2018). An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches. Composite Structures, vol.190, pp.179-188.
- [9] Choi, I. H. (2016). Geometrically nonlinear transient analysis of composite laminated plate and shells subjected to low-velocity impact. Composite Structures, vol.142, pp. 7-14.
- [10] Hu, Y., Liu, W., Shi, Y. (2019). Low-velocity impact damage research on CFRPs with Kevlar-fiber toughening. Composite Structures, vol.216, pp.127-141.
- [11] Zhang, Y., Sun, L., Li, L., Wang, T., and Shen, L. (2019). Experimental and numerical investigations on low-velocity impact response of high strength steel/composite hybrid plate. International Journal of Impact Engineering, vol.123, pp.1-13.
- [12] Liu, H., Falzon, B. G., Tan, W. (2018). Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Composites Part B: Engineering, vol.136, pp.101-118.
[13] Liu, P. F., Liao, B. B., Jia, L. Y., Peng, X. Q. (2016). Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Composite Structures, vol.149, pp. 408-422.
- [14] Zhang, C., Duodu, E. A., Gu, J. (2017). Finite element modeling of damage development in cross-ply composite laminates subjected to low velocity impact. Composite Structures, vol.173, pp.219-227.
- [15] Bunea, M., Circiumaru, A., Buciumeanu, M., Birsan, I. G., Silva, F. S. (2019). Low velocity impact response of fabric reinforced hybrid composites with stratified filled epoxy matrix. Composites Science and Technology, vol.169, pp.242-248.
- [16] Ismail, K. I., Sultan, M. T. H., Shah, A. U. M., Jawaid, M., Safri, S. N. A. (2019). Low velocity impact and compression after impact properties of hybrid bio-composites modified with multi-walled carbon nanotubes. Composites Part B: Engineering. vol.163, pp.455-463.
- [17] Menna, C., Asprone, D., Caprino, G., Lopresto, V., Prota, A. (2011). Numerical simulation of impact tests on GFRP composite laminates, International Journal of Impact Engineering. vol.38, pp.677-685.
- [18] Liu, J., He, W., Xie, D., Tao, B. (2017). The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures. Composites Part B: Engineering. vol. 111, pp.315-331.
- [19] Naik, N. K., Sekher, Y. C., Meduri, S. (2000). Damage in woven-fabric composites subjected to low-velocity impact. Composites Science and Technology. vol. 60, pp.731-744.
[20] Park, H., Kim, H. (2010). Damage resistance of single lap adhesive composite joints by transverse ice impact. International Journal of Impact Engineering. vol. 37, pp. 177-184.
- [21] Challita, G. (2010). Othman, R. Finite-element analysis of SHPB tests on double-lap adhesive joints. International Journal of Adhesion and Adhesives. vol.30, pp.236-244.
- [22] Chiu, W. K., Zhou, Z., Wang, J.,Baker (2012). A. Battle damage repair of a helicopter composite main rotor blade. Composites Part B: Engineering, vol.43 pp. 739-753.
- [23] Kara, M. (2006). Düşük hızlı darbeye maruz tabakalı kompozitlerin dinamik cevabı. PhD Thesis, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (2006).
- [24] Garcia-Moreno, I., Caminero, M. A., Rodríguez, G. P., Lopez-Cela, J. J. (2019) Effect of thermal ageing on the impact damage resistance and tolerance of carbon-fiber-reinforced epoxy laminates. Polymers, vol. (11) pp. 160.
- [25] Selver, E., Potluri, P., Hogg, P., Soutis, C. (2016). Impact damage tolerance of thermoset composites reinforced with hybrid commingled yarns. Composites Part B: Engineering. vol.91, pp. 522-538.
- [26] Barzegar, M., Moallem, M. D., Mokhtari, M. (2020). Progressive damage analysis of an adhesively bonded composite T-joint under bending, considering micro-scale effects of fiber volume fraction of adherents. Composite Structures. 113374.
Effect of repair parameters on composite plates under low velocity impact
Year 2022,
Volume: 6 Issue: 1, 58 - 67, 20.03.2022
Mustafa Albayrak
,
Mustafa Gür
,
Mete Onur Kaman
Abstract
In this study, the impact behavior of patch-repaired layered composite plates under low velocity impact loads was numerically investigated. For this purpose, layered composite plates with holes with different geometries in the middle were repaired with patches using various adhesives. Impact behavior of the composite material was investigated by dropping the strikers with different speeds on the repaired composite plate. Layered composite plate was used as the sheet and patch material, and the orientation angles are [0 ° / 45 ° / 45 ° / 0 °] for the plate and [0 ° / 45 °] for the patch. ANSYS Ls-Dyna finite element package program was used for three dimensional modelling and solution. Therefore, the effects of variables such as striker, adhesive, plate and patch on the impact behavior of layered composite material were investigated for different boundary conditions. It has been determined that the hexagonal patch type performs better than other patch geometries.
References
- [1] Cheng, X., Zhang, J., Bao, J., Zeng, B., Cheng, Y., Hu, R. (2018). Low-velocity impact performance and effect factor analysis of scarf-repaired composite laminates. International Journal of Impact Engineering, vol.111, pp. 85-93.
- [2] Ivañez, I., Garcia-Castillo, S. K., Sanchez-Saez, S., Barbero, E. (2019). Analysis of the impact location on damage tolerance of bonded-repaired composite laminates. Polymer Testing, vol.78, 106000.
- [3] Tie, Y., Hou, Y., Li, C., Meng, L., Sapanathan, T., Rachik, M. (2020). Optimization for maximizing the impact-resistance of patch repaired CFRP laminates using a surrogate-based model. International Journal of Mechanical Sciences, vol.172, 105407.
- [4] Kashfuddoja, M., Ramji, M. (2014). Design of optimum patch shape and size for bonded repair on damaged Carbon fibre reinforced polymer panels. Materials and Design (1980-2015), vol.54, pp. 174-183.
- [5] Kara, M., Uyaner, M., Avci, A. (2015). Repairing impact damaged fiber reinforced composite pipes by external wrapping with composite patches. Composite Structures, vol.123, pp. 1-8.
- [6] Andrew, J. J., Arumugam, V., Saravanakumar, K., Dhakal, H. N., Santulli, C. (2015). Compression after impact strength of repaired GFRP composite laminates under repeated impact loading. Composite structures, vol.133, pp. 911-920.
- [7] Coelho, S. R. M., Reis, P. N. B., Ferreira, J. A. M., Pereira, A. M. (2017). Effects of external patch configuration on repaired composite laminates subjected to multi-impacts. Composite Structures, vol.168, pp. 259-265.
- [8] Tie, Y., Hou, Y., Li, C., Zhou, X., Sapanathan, T., Rachik, M. (2018). An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches. Composite Structures, vol.190, pp.179-188.
- [9] Choi, I. H. (2016). Geometrically nonlinear transient analysis of composite laminated plate and shells subjected to low-velocity impact. Composite Structures, vol.142, pp. 7-14.
- [10] Hu, Y., Liu, W., Shi, Y. (2019). Low-velocity impact damage research on CFRPs with Kevlar-fiber toughening. Composite Structures, vol.216, pp.127-141.
- [11] Zhang, Y., Sun, L., Li, L., Wang, T., and Shen, L. (2019). Experimental and numerical investigations on low-velocity impact response of high strength steel/composite hybrid plate. International Journal of Impact Engineering, vol.123, pp.1-13.
- [12] Liu, H., Falzon, B. G., Tan, W. (2018). Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Composites Part B: Engineering, vol.136, pp.101-118.
[13] Liu, P. F., Liao, B. B., Jia, L. Y., Peng, X. Q. (2016). Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Composite Structures, vol.149, pp. 408-422.
- [14] Zhang, C., Duodu, E. A., Gu, J. (2017). Finite element modeling of damage development in cross-ply composite laminates subjected to low velocity impact. Composite Structures, vol.173, pp.219-227.
- [15] Bunea, M., Circiumaru, A., Buciumeanu, M., Birsan, I. G., Silva, F. S. (2019). Low velocity impact response of fabric reinforced hybrid composites with stratified filled epoxy matrix. Composites Science and Technology, vol.169, pp.242-248.
- [16] Ismail, K. I., Sultan, M. T. H., Shah, A. U. M., Jawaid, M., Safri, S. N. A. (2019). Low velocity impact and compression after impact properties of hybrid bio-composites modified with multi-walled carbon nanotubes. Composites Part B: Engineering. vol.163, pp.455-463.
- [17] Menna, C., Asprone, D., Caprino, G., Lopresto, V., Prota, A. (2011). Numerical simulation of impact tests on GFRP composite laminates, International Journal of Impact Engineering. vol.38, pp.677-685.
- [18] Liu, J., He, W., Xie, D., Tao, B. (2017). The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures. Composites Part B: Engineering. vol. 111, pp.315-331.
- [19] Naik, N. K., Sekher, Y. C., Meduri, S. (2000). Damage in woven-fabric composites subjected to low-velocity impact. Composites Science and Technology. vol. 60, pp.731-744.
[20] Park, H., Kim, H. (2010). Damage resistance of single lap adhesive composite joints by transverse ice impact. International Journal of Impact Engineering. vol. 37, pp. 177-184.
- [21] Challita, G. (2010). Othman, R. Finite-element analysis of SHPB tests on double-lap adhesive joints. International Journal of Adhesion and Adhesives. vol.30, pp.236-244.
- [22] Chiu, W. K., Zhou, Z., Wang, J.,Baker (2012). A. Battle damage repair of a helicopter composite main rotor blade. Composites Part B: Engineering, vol.43 pp. 739-753.
- [23] Kara, M. (2006). Düşük hızlı darbeye maruz tabakalı kompozitlerin dinamik cevabı. PhD Thesis, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (2006).
- [24] Garcia-Moreno, I., Caminero, M. A., Rodríguez, G. P., Lopez-Cela, J. J. (2019) Effect of thermal ageing on the impact damage resistance and tolerance of carbon-fiber-reinforced epoxy laminates. Polymers, vol. (11) pp. 160.
- [25] Selver, E., Potluri, P., Hogg, P., Soutis, C. (2016). Impact damage tolerance of thermoset composites reinforced with hybrid commingled yarns. Composites Part B: Engineering. vol.91, pp. 522-538.
- [26] Barzegar, M., Moallem, M. D., Mokhtari, M. (2020). Progressive damage analysis of an adhesively bonded composite T-joint under bending, considering micro-scale effects of fiber volume fraction of adherents. Composite Structures. 113374.