Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of niobium carbide coating on wear behavior of grey cast iron via thermo-reactive diffusion process

Yıl 2024, Cilt: 8 Sayı: 3, 115 - 124

Öz

Wear is the limit for grey cast iron (GCI), which is utilized extensively in today’s industries. Coating the surface of a material can enhance its ability to withstand wear. In this study, thermo-reactive diffusion (TRD) process was used to coat the surface of grey cast iron with niobium carbide (NbC). The coatings were applied for 2, 4 and 6 hours at 950ºC and 1050ºC. The coated samples were subjected to metallographic examination to investigate the microstructure of the coating zone. For this purpose, optical microscopy examinations were carried out. Microhardness tests were carried out to assess the mechanical properties of the samples. The coated surfaces were analyzed using energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Wear tests were carried out on the coated surfaces to measure the volumetric wear loss, the wear rate and the changes in the coefficient of friction. Coating thickness rose as furnace waiting time increased, according to optical microstructures of coated surfaces. The hardness of the coated surfaces increased with a longer coating duration. Depending on the duration and temperature of the coating process, the layer thickness ranged from 6 to 52 µm. The lowest microhardness and the highest microhardness values of the coatings were determined at 950ºC for 2 hours and at 950ºC for 6 hours, respectively. Compared to the uncoated samples, the coated samples had a 6-9 times higher hardness value. In the abrasion tests, the loss of wear volume increased with increase in load.

Kaynakça

  • Tokova, O., & Savchenko, Y. (2019). Modelling of dependence of mechanical properties of cast iron on chemical composition of raw materials. In 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT) (pp. 179-182). IEEE. https://doi.org/10.1109/stc-csit.2019.8929865
  • Yakut, R., & Çiftçi, Ö. (2023). Investigation of the microstructure, hardness, and compressive properties of TaC-reinforced lamellar graphite cast irons. European Mechanical Science, 7(2), 56-62. https://doi.org/10.26701/ems.1213039
  • Nam, J., Lee, S., & Lee, S. (2023). Guaranteed soundness of heavy section spheroidal graphite cast iron based on a reliable C and Si ranges design. Metals and Materials International, 29(8), 2151-2158. https://doi.org/10.1007/s12540-022-01377-4
  • Lima, F. F. O., Bauri, L. F., Pereira, H. B., & Azevedo, C. R. F. (2020). Effect of the cooling rate on the tensile strength of pearlitic lamellar graphite cast iron. International Journal of Cast Metals Research, 33(4-5), 201-217. https://doi.org/10.1080/13640461.2020.1822573
  • Diószegi, A., Svidró, P., Elmquist, L., & Dugic, I. (2016). Defect formation mechanisms in lamellar graphite iron related to the casting geometry. International Journal of Cast Metals Research, 29(5), 279-285. https://doi.org/10.1080/13640461.2016.1211579
  • Collini, L., Nicoletto, G., & Konečná, R. (2008). Microstructure and mechanical properties of pearlitic gray cast iron. Materials Science and Engineering: A, 488(1-2), 529-539. https://doi.org/10.1016/j.msea.2007.11.070
  • Bartocha, D., Janerka, K., & Suchoń, J. (2005). Charge materials and technology of melt and structure of gray cast iron. Journal of Materials Processing Technology, 162-163, 465-470. https://doi.org/10.1016/j.jmatprotec.2005.02.050
  • Xu, W., Ferry, M., & Wang, Y. (2005). Influence of alloying elements on as-cast microstructure and strength of gray iron. Materials Science and Engineering: A, 390(1-2), 326-333. https://doi.org/10.1016/j.msea.2004.08.030
  • Hemanth, J., & Rao, K. S. (1999). Effect of cooling rate on eutectic cell count, grain size, microstructure, and ultimate tensile strength of hypoeutectic cast iron. Journal of Materials Engineering and Performance, 8(4), 417-423. https://doi.org/10.1361/105994999770346701
  • Prasad, B. K. (2005). Sliding wear response of a zinc-based alloy and its composite and comparison with a gray cast iron: Influence of external lubrication and microstructural features. Materials Science and Engineering: A, 392(1-2), 427-439. https://doi.org/10.1016/j.msea.2004.10.031
  • Fesahat, M., Soltanieh, M., & Eivani, A. R. (2016). Effect of plasma nitriding on nanostructure of TRD coating. Surface Engineering, 32(8), 547-553. https://doi.org/10.1179/1743294415Y.0000000094
  • Biesuz, M., & Sglavo, V. M. (2016). Chromium and vanadium carbide and nitride coatings obtained by TRD techniques on UNI 42CrMoS4 (AISI 4140) steel. Surface and Coatings Technology, 286, 319-326. https://doi.org/10.1016/j.surfcoat.2015.12.063
  • Fan, X. S., Yang, Z. G., Zhang, C., Zhang, Y. D., & Che, H. Q. (2010). Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique. Surface and Coatings Technology, 205(2), 641-646. https://doi.org/10.1016/j.surfcoat.2010.07.065
  • Najari, M. R., Sajjadi, S. A., & Ganji, O. (2022). Microstructural evolution and wear properties of chromium carbide coating formed by thermo-reactive diffusion (TRD) process on a cold-work tool steel. Results in Surfaces and Interfaces, 8, 100059. https://doi.org/10.1016/j.rsurfi.2022.100059
  • Ghadi, A., Ebrahimnezhad-Khaljiri, H., & Gholizadeh, R. (2023). A comprehensive review on the carbide-base coatings produced by thermo-reactive diffusion: Microstructure and properties viewpoints. Journal of Alloys and Compounds, 967, 171839. https://doi.org/10.1016/j.jallcom.2023.171839
  • Ganji, O., Sajjadi, S. A., Yang, Z., Mirjalili, M., & Najari, M. R. (2020). On the formation and properties of chromium carbide and vanadium carbide coatings produced on W1 tool steel through thermal reactive diffusion (TRD). Ceramics International, 46(16), 25320-25329. https://doi.org/10.1016/j.ceramint.2020.06.326
  • Strahin, B. L., Shreeram, D. D., & Doll, G. L. (2017). Properties and tribological performance of vanadium carbide coatings on AISI 52100 steel deposited by thermo-reactive diffusion. JOM, 69(7), 1160-1164. https://doi.org/10.1007/s11837-017-2370-2
  • Arai, T. (2015). The thermo-reactive deposition and diffusion process for coating steels to improve wear resistance. In Thermochemical Surface Engineering of Steels (pp. 703-735). https://doi.org/10.1533/9780857096524.5.703
  • Khalaj, G., Nazari, A., Khoie, S. M. M., & Khalaj, M. J., Pouraliakbar, H. (2013). Chromium carbonitride coating produced on DIN 1.2210 steel by thermo-reactive deposition technique: Thermodynamics, kinetics and modeling. Surface and Coatings Technology, 225, 1-10. https://doi.org/10.1016/j.surfcoat.2013.02.030
  • Khalaj, G., & Pouraliakbar, H. (2014). Computer-aided modeling for predicting layer thickness of a duplex treated ceramic coating on tool steels. Ceramics International, 40(4), 5515-5522. https://doi.org/10.1016/j.ceramint.2013.10.141
  • Khalaj, G. (2012). Artificial neural network to predict the effects of coating parameters on layer thickness of chromium carbonitride coating on pre-nitrided steels. Neural Computing and Applications, 23(3-4), 779-786. https://doi.org/10.1007/s00521-012-0994-2
  • Pouraliakbar, H., Khalaj, G., Gomidželović, L., Khalaj, M. J., & Nazerfakhari, M. (2015). Duplex ceramic coating produced by low temperature thermo-reactive deposition and diffusion on the cold work tool steel substrate: Thermodynamics, kinetics and modeling. Ceramics International, 41(8), 9350-9360. https://doi.org/10.1016/j.ceramint.2015.03.306
  • Amaya, A., Piamba, O., & Olaya, J. (2018). Improvement of corrosion resistance for gray cast iron in palm biodiesel application using thermoreactive diffusion niobium carbide (NbC) coating. Coatings, 8(6), 216. https://doi.org/10.3390/coatings8060216
  • Jin, W., Meng, Q., Niu, L., Li, C., & Wang, H. (2017). Properties of the functionally gradient chromium-niobium carbide coating obtained by thermo-reactive deposition technique. Key Engineering Materials, 753, 129-133. https://doi.org/10.4028/www.scientific.net/kem.753.129
  • Triani, R. M., Mariani, F., De Assis Gomes, L. F., De Oliveira, P. G., Totten, G. E., & Casteletti, L. C. (2019). Improvement of the tribological characteristics of AISI 8620, 8640 and 52100 steels through thermo-reactive treatments. Lubricants, 7(8), 63. https://doi.org/10.3390/lubricants7080063
  • Cuppari, M. G., & Santos, S. F. (2016). Physical properties of the NbC carbide. Metals, 6(10), 250. https://doi.org/10.3390/met6100250
  • Johansson, L. I. (1995). Electronic and structural properties of transition-metal carbide and nitride surfaces. Surface Science Reports, 21(5-6), 177-250. https://doi.org/10.1016/0167-5729(94)00005-0
  • Yingpeng, L., Wang, K., Fu, H., Bin, Z., & Zhang, J. (2023). Wear resistance of in situ NbC-reinforced laser cladding Ni45 coatings. Lubricants, 11(8), 316. https://doi.org/10.3390/lubricants11080316
  • De Oliveira, P. G., Triani, R. M., Filho, A. I., Neto, A. L., Totten, G. E., & Casteletti, L. C. (2021). Production of niobium carbide layers on high-strength bainitic steels by thermo-chemical treatment of TRD followed by austempering. Steel Research International, 93(1), 2100352. https://doi.org/10.1002/srin.202100352
  • Orjuela-G, A., Rincon, R., & Olaya, J. J. (2014). Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition. Surface & Coatings Technology, 259, 667-675. https://doi.org/10.1016/j.surfcoat.2014.10.012
  • Aghaie-Khafri, M., & Fazlalipour, F. (2008). Kinetics of V(N,C) coating produced by a duplex surface treatment. Surface and Coatings Technology, 202(17), 4107-4113. https://doi.org/10.1016/j.surfcoat.2008.02.027
  • Taktak, S., & Ulu, S. (2010). Wear behaviour of TRD carbide coatings at elevated temperatures. Industrial Lubrication and Tribology, 62(1), 37-45. https://doi.org/10.1108/00368791011012452
  • King, P., Reynoldson, R. W., Brownrigg, A., & Long, J. A. (2004). Cr(N,C) diffusion coating formation on pre-nitrocarburised H13 tool steel. Surface and Coatings Technology, 179(1), 18-26. https://doi.org/10.1016/s0257-8972(03)00791-6
  • Ozdemir, O., Sen, S., & Sen, U. (2007). Formation of chromium nitride layers on AISI 1010 steel by nitro-chromizing treatment. Vacuum, 81(5), 567-570. https://doi.org/10.1016/j.vacuum.2006.07.002
  • Castillejo, F. E., Marulanda, D. M., Olaya, J. J., & Alfonso, J. E. (2014). Wear and corrosion resistance of niobium–chromium carbide coatings on AISI D2 produced through TRD. Surface and Coatings Technology, 254, 104-111. https://doi.org/10.1016/j.surfcoat.2014.05.069
  • Wu, Z., Qing, H., Guo, H., & Chen, Y. (2021). Growth and mechanical properties of Nb-Cr carbide coatings on graphite by TRD technique. International Journal of Refractory Metals and Hard Materials, 101, 105660. https://doi.org/10.1016/j.ijrmhm.2021.105660
  • Günen, A., Kalkandelen, M., Gök, M. S., Kanca, E., Kurt, B., Karakaş, M. S., Karahan, İ. H., & Çetin, M. (2020). Characteristics and high temperature wear behavior of chrome vanadium carbide composite coatings produced by thermo-reactive diffusion. Surface and Coatings Technology, 402, 126402. https://doi.org/10.1016/j.surfcoat.2020.126402
  • Kurt, B., Küçük, Y., & Gök, M. S. (2014). Microabrasion wear behavior of VC and CrC coatings deposited by thermoreactive diffusion technique. Tribology Transactions, 57(2), 345-352. https://doi.org/10.1080/10402004.2014.880538
  • Cai, X., & Xu, Y. (2017). Microstructure, friction and wear of NBC coatings on a Fe substrate fabricated via an in situ reaction. Surface and Coatings Technology, 322, 202-210. https://doi.org/10.1016/j.surfcoat.2017.05.046
  • Yakut, R., & Çiftçi, Ö. (2022). The effects of reinforcement with TaC on the microstructure and wear properties of lamellar graphite cast irons. European Journal of Technique, 12(1), 77-81. https://doi.org/10.36222/ejt.1088994
  • Soares, C., Mariani, F. E., Casteletti, L. C., Lombardi, A. N., & Totten, G. E. (2017). Characterization of niobium carbide layers produced in ductile cast iron using Thermo-Reactive treatments. Materials Performance and Characterization, 6(4), 607-616. https://doi.org/10.1520/mpc20160093
  • Wei, C.-Y., & Chen, F.-S. (2005). Characterization on multi-layer fabricated by TRD and plasma nitriding. Materials Chemistry and Physics, 90(1), 178-184. https://doi.org/10.1016/j.matchemphys.2004.10.008
  • Mariani, F. E., Lombardi, A. N., & Casteletti, L. C. (2022). Tribological evaluation of NbC and VC layers produced by thermo-reactive diffusion treatment in ductile cast irons with varying composition. Journal of Materials Engineering and Performance, 32(12), 5421-5434. https://doi.org/10.1007/s11665-022-07495-9
  • Soltani, R., Sohi, M. H., Ansari, M., Haghighi, A., Ghasemi, H. M., & Haftlang, F. (2017). Evaluation of niobium carbide coatings produced on AISI L2 steel via thermo-reactive diffusion technique. Vacuum, 146, 44-51. https://doi.org/10.1016/j.vacuum.2017.09.023
  • Mariani, F., Rêgo, G. C., Bonella, P. G., Neto, A. L., Totten, G. E., & Casteletti, L. C. (2020). Wear resistance of niobium carbide layers produced on gray cast iron by thermoreactive treatments. Journal of Materials Engineering and Performance, 29(6), 3516-3522. https://doi.org/10.1007/s11665-020-04645-9
  • Prasad, B. K. (2011). Sliding wear response of a grey cast iron: Effects of some experimental parameters. Tribology International, 44(5), 660-667. https://doi.org/10.1016/j.triboint.2011.01.006
  • Arabi Jeshvaghani, R., Shamanian, M., & Jaberzadeh, M. (2011). Enhancement of wear resistance of ductile iron surface alloyed by stellite 6. Materials & Design, 32(4), 2028-2033. https://doi.org/10.1016/j.matdes.2010.11.060
  • Zhang, L., Sun, D., & Yu, H. (2008). Effect of niobium on the microstructure and wear resistance of iron-based alloy coating produced by plasma cladding. Materials Science and Engineering: A, 490(1-2), 57-61. https://doi.org/10.1016/j.msea.2008.02.041
  • Mishra, R., Basu, B., & Balasubramaniam, R. (2004). Effect of grain size on the tribological behavior of nanocrystalline nickel. Materials Science and Engineering: A, 373(1-2), 370-373. https://doi.org/10.1016/j.msea.2003.09.107
  • Cai, X., Xu, Y., Zhao, N., Zhong, L., Zhao, Z., & Wang, J. (2016). Investigation of the adhesion strength and deformation behavior of in situ fabricated NBC coatings by scratch testing. Surface and Coatings Technology, 299, 135-142. https://doi.org/10.1016/j.surfcoat.2016.05.004
  • Cai, X., Xu, Y., Liu, M., Zhong, L., & Bai, F. (2017). Preparation of a gradient nanostructured surface TaC layer-reinforced Fe substrate by in situ reaction. Journal of Alloys and Compounds, 712, 204-212. https://doi.org/10.1016/j.jallcom.2017.04.081
  • Tasyurek, M., & Duzcukoglu, H. (2021). Improving the wear behavior of epoxy resin with boron carbide reinforcement. Iranian Polymer Journal, 31(2), 169-184. https://doi.org/10.1007/s13726-021-00987-w
Yıl 2024, Cilt: 8 Sayı: 3, 115 - 124

Öz

Kaynakça

  • Tokova, O., & Savchenko, Y. (2019). Modelling of dependence of mechanical properties of cast iron on chemical composition of raw materials. In 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT) (pp. 179-182). IEEE. https://doi.org/10.1109/stc-csit.2019.8929865
  • Yakut, R., & Çiftçi, Ö. (2023). Investigation of the microstructure, hardness, and compressive properties of TaC-reinforced lamellar graphite cast irons. European Mechanical Science, 7(2), 56-62. https://doi.org/10.26701/ems.1213039
  • Nam, J., Lee, S., & Lee, S. (2023). Guaranteed soundness of heavy section spheroidal graphite cast iron based on a reliable C and Si ranges design. Metals and Materials International, 29(8), 2151-2158. https://doi.org/10.1007/s12540-022-01377-4
  • Lima, F. F. O., Bauri, L. F., Pereira, H. B., & Azevedo, C. R. F. (2020). Effect of the cooling rate on the tensile strength of pearlitic lamellar graphite cast iron. International Journal of Cast Metals Research, 33(4-5), 201-217. https://doi.org/10.1080/13640461.2020.1822573
  • Diószegi, A., Svidró, P., Elmquist, L., & Dugic, I. (2016). Defect formation mechanisms in lamellar graphite iron related to the casting geometry. International Journal of Cast Metals Research, 29(5), 279-285. https://doi.org/10.1080/13640461.2016.1211579
  • Collini, L., Nicoletto, G., & Konečná, R. (2008). Microstructure and mechanical properties of pearlitic gray cast iron. Materials Science and Engineering: A, 488(1-2), 529-539. https://doi.org/10.1016/j.msea.2007.11.070
  • Bartocha, D., Janerka, K., & Suchoń, J. (2005). Charge materials and technology of melt and structure of gray cast iron. Journal of Materials Processing Technology, 162-163, 465-470. https://doi.org/10.1016/j.jmatprotec.2005.02.050
  • Xu, W., Ferry, M., & Wang, Y. (2005). Influence of alloying elements on as-cast microstructure and strength of gray iron. Materials Science and Engineering: A, 390(1-2), 326-333. https://doi.org/10.1016/j.msea.2004.08.030
  • Hemanth, J., & Rao, K. S. (1999). Effect of cooling rate on eutectic cell count, grain size, microstructure, and ultimate tensile strength of hypoeutectic cast iron. Journal of Materials Engineering and Performance, 8(4), 417-423. https://doi.org/10.1361/105994999770346701
  • Prasad, B. K. (2005). Sliding wear response of a zinc-based alloy and its composite and comparison with a gray cast iron: Influence of external lubrication and microstructural features. Materials Science and Engineering: A, 392(1-2), 427-439. https://doi.org/10.1016/j.msea.2004.10.031
  • Fesahat, M., Soltanieh, M., & Eivani, A. R. (2016). Effect of plasma nitriding on nanostructure of TRD coating. Surface Engineering, 32(8), 547-553. https://doi.org/10.1179/1743294415Y.0000000094
  • Biesuz, M., & Sglavo, V. M. (2016). Chromium and vanadium carbide and nitride coatings obtained by TRD techniques on UNI 42CrMoS4 (AISI 4140) steel. Surface and Coatings Technology, 286, 319-326. https://doi.org/10.1016/j.surfcoat.2015.12.063
  • Fan, X. S., Yang, Z. G., Zhang, C., Zhang, Y. D., & Che, H. Q. (2010). Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique. Surface and Coatings Technology, 205(2), 641-646. https://doi.org/10.1016/j.surfcoat.2010.07.065
  • Najari, M. R., Sajjadi, S. A., & Ganji, O. (2022). Microstructural evolution and wear properties of chromium carbide coating formed by thermo-reactive diffusion (TRD) process on a cold-work tool steel. Results in Surfaces and Interfaces, 8, 100059. https://doi.org/10.1016/j.rsurfi.2022.100059
  • Ghadi, A., Ebrahimnezhad-Khaljiri, H., & Gholizadeh, R. (2023). A comprehensive review on the carbide-base coatings produced by thermo-reactive diffusion: Microstructure and properties viewpoints. Journal of Alloys and Compounds, 967, 171839. https://doi.org/10.1016/j.jallcom.2023.171839
  • Ganji, O., Sajjadi, S. A., Yang, Z., Mirjalili, M., & Najari, M. R. (2020). On the formation and properties of chromium carbide and vanadium carbide coatings produced on W1 tool steel through thermal reactive diffusion (TRD). Ceramics International, 46(16), 25320-25329. https://doi.org/10.1016/j.ceramint.2020.06.326
  • Strahin, B. L., Shreeram, D. D., & Doll, G. L. (2017). Properties and tribological performance of vanadium carbide coatings on AISI 52100 steel deposited by thermo-reactive diffusion. JOM, 69(7), 1160-1164. https://doi.org/10.1007/s11837-017-2370-2
  • Arai, T. (2015). The thermo-reactive deposition and diffusion process for coating steels to improve wear resistance. In Thermochemical Surface Engineering of Steels (pp. 703-735). https://doi.org/10.1533/9780857096524.5.703
  • Khalaj, G., Nazari, A., Khoie, S. M. M., & Khalaj, M. J., Pouraliakbar, H. (2013). Chromium carbonitride coating produced on DIN 1.2210 steel by thermo-reactive deposition technique: Thermodynamics, kinetics and modeling. Surface and Coatings Technology, 225, 1-10. https://doi.org/10.1016/j.surfcoat.2013.02.030
  • Khalaj, G., & Pouraliakbar, H. (2014). Computer-aided modeling for predicting layer thickness of a duplex treated ceramic coating on tool steels. Ceramics International, 40(4), 5515-5522. https://doi.org/10.1016/j.ceramint.2013.10.141
  • Khalaj, G. (2012). Artificial neural network to predict the effects of coating parameters on layer thickness of chromium carbonitride coating on pre-nitrided steels. Neural Computing and Applications, 23(3-4), 779-786. https://doi.org/10.1007/s00521-012-0994-2
  • Pouraliakbar, H., Khalaj, G., Gomidželović, L., Khalaj, M. J., & Nazerfakhari, M. (2015). Duplex ceramic coating produced by low temperature thermo-reactive deposition and diffusion on the cold work tool steel substrate: Thermodynamics, kinetics and modeling. Ceramics International, 41(8), 9350-9360. https://doi.org/10.1016/j.ceramint.2015.03.306
  • Amaya, A., Piamba, O., & Olaya, J. (2018). Improvement of corrosion resistance for gray cast iron in palm biodiesel application using thermoreactive diffusion niobium carbide (NbC) coating. Coatings, 8(6), 216. https://doi.org/10.3390/coatings8060216
  • Jin, W., Meng, Q., Niu, L., Li, C., & Wang, H. (2017). Properties of the functionally gradient chromium-niobium carbide coating obtained by thermo-reactive deposition technique. Key Engineering Materials, 753, 129-133. https://doi.org/10.4028/www.scientific.net/kem.753.129
  • Triani, R. M., Mariani, F., De Assis Gomes, L. F., De Oliveira, P. G., Totten, G. E., & Casteletti, L. C. (2019). Improvement of the tribological characteristics of AISI 8620, 8640 and 52100 steels through thermo-reactive treatments. Lubricants, 7(8), 63. https://doi.org/10.3390/lubricants7080063
  • Cuppari, M. G., & Santos, S. F. (2016). Physical properties of the NbC carbide. Metals, 6(10), 250. https://doi.org/10.3390/met6100250
  • Johansson, L. I. (1995). Electronic and structural properties of transition-metal carbide and nitride surfaces. Surface Science Reports, 21(5-6), 177-250. https://doi.org/10.1016/0167-5729(94)00005-0
  • Yingpeng, L., Wang, K., Fu, H., Bin, Z., & Zhang, J. (2023). Wear resistance of in situ NbC-reinforced laser cladding Ni45 coatings. Lubricants, 11(8), 316. https://doi.org/10.3390/lubricants11080316
  • De Oliveira, P. G., Triani, R. M., Filho, A. I., Neto, A. L., Totten, G. E., & Casteletti, L. C. (2021). Production of niobium carbide layers on high-strength bainitic steels by thermo-chemical treatment of TRD followed by austempering. Steel Research International, 93(1), 2100352. https://doi.org/10.1002/srin.202100352
  • Orjuela-G, A., Rincon, R., & Olaya, J. J. (2014). Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition. Surface & Coatings Technology, 259, 667-675. https://doi.org/10.1016/j.surfcoat.2014.10.012
  • Aghaie-Khafri, M., & Fazlalipour, F. (2008). Kinetics of V(N,C) coating produced by a duplex surface treatment. Surface and Coatings Technology, 202(17), 4107-4113. https://doi.org/10.1016/j.surfcoat.2008.02.027
  • Taktak, S., & Ulu, S. (2010). Wear behaviour of TRD carbide coatings at elevated temperatures. Industrial Lubrication and Tribology, 62(1), 37-45. https://doi.org/10.1108/00368791011012452
  • King, P., Reynoldson, R. W., Brownrigg, A., & Long, J. A. (2004). Cr(N,C) diffusion coating formation on pre-nitrocarburised H13 tool steel. Surface and Coatings Technology, 179(1), 18-26. https://doi.org/10.1016/s0257-8972(03)00791-6
  • Ozdemir, O., Sen, S., & Sen, U. (2007). Formation of chromium nitride layers on AISI 1010 steel by nitro-chromizing treatment. Vacuum, 81(5), 567-570. https://doi.org/10.1016/j.vacuum.2006.07.002
  • Castillejo, F. E., Marulanda, D. M., Olaya, J. J., & Alfonso, J. E. (2014). Wear and corrosion resistance of niobium–chromium carbide coatings on AISI D2 produced through TRD. Surface and Coatings Technology, 254, 104-111. https://doi.org/10.1016/j.surfcoat.2014.05.069
  • Wu, Z., Qing, H., Guo, H., & Chen, Y. (2021). Growth and mechanical properties of Nb-Cr carbide coatings on graphite by TRD technique. International Journal of Refractory Metals and Hard Materials, 101, 105660. https://doi.org/10.1016/j.ijrmhm.2021.105660
  • Günen, A., Kalkandelen, M., Gök, M. S., Kanca, E., Kurt, B., Karakaş, M. S., Karahan, İ. H., & Çetin, M. (2020). Characteristics and high temperature wear behavior of chrome vanadium carbide composite coatings produced by thermo-reactive diffusion. Surface and Coatings Technology, 402, 126402. https://doi.org/10.1016/j.surfcoat.2020.126402
  • Kurt, B., Küçük, Y., & Gök, M. S. (2014). Microabrasion wear behavior of VC and CrC coatings deposited by thermoreactive diffusion technique. Tribology Transactions, 57(2), 345-352. https://doi.org/10.1080/10402004.2014.880538
  • Cai, X., & Xu, Y. (2017). Microstructure, friction and wear of NBC coatings on a Fe substrate fabricated via an in situ reaction. Surface and Coatings Technology, 322, 202-210. https://doi.org/10.1016/j.surfcoat.2017.05.046
  • Yakut, R., & Çiftçi, Ö. (2022). The effects of reinforcement with TaC on the microstructure and wear properties of lamellar graphite cast irons. European Journal of Technique, 12(1), 77-81. https://doi.org/10.36222/ejt.1088994
  • Soares, C., Mariani, F. E., Casteletti, L. C., Lombardi, A. N., & Totten, G. E. (2017). Characterization of niobium carbide layers produced in ductile cast iron using Thermo-Reactive treatments. Materials Performance and Characterization, 6(4), 607-616. https://doi.org/10.1520/mpc20160093
  • Wei, C.-Y., & Chen, F.-S. (2005). Characterization on multi-layer fabricated by TRD and plasma nitriding. Materials Chemistry and Physics, 90(1), 178-184. https://doi.org/10.1016/j.matchemphys.2004.10.008
  • Mariani, F. E., Lombardi, A. N., & Casteletti, L. C. (2022). Tribological evaluation of NbC and VC layers produced by thermo-reactive diffusion treatment in ductile cast irons with varying composition. Journal of Materials Engineering and Performance, 32(12), 5421-5434. https://doi.org/10.1007/s11665-022-07495-9
  • Soltani, R., Sohi, M. H., Ansari, M., Haghighi, A., Ghasemi, H. M., & Haftlang, F. (2017). Evaluation of niobium carbide coatings produced on AISI L2 steel via thermo-reactive diffusion technique. Vacuum, 146, 44-51. https://doi.org/10.1016/j.vacuum.2017.09.023
  • Mariani, F., Rêgo, G. C., Bonella, P. G., Neto, A. L., Totten, G. E., & Casteletti, L. C. (2020). Wear resistance of niobium carbide layers produced on gray cast iron by thermoreactive treatments. Journal of Materials Engineering and Performance, 29(6), 3516-3522. https://doi.org/10.1007/s11665-020-04645-9
  • Prasad, B. K. (2011). Sliding wear response of a grey cast iron: Effects of some experimental parameters. Tribology International, 44(5), 660-667. https://doi.org/10.1016/j.triboint.2011.01.006
  • Arabi Jeshvaghani, R., Shamanian, M., & Jaberzadeh, M. (2011). Enhancement of wear resistance of ductile iron surface alloyed by stellite 6. Materials & Design, 32(4), 2028-2033. https://doi.org/10.1016/j.matdes.2010.11.060
  • Zhang, L., Sun, D., & Yu, H. (2008). Effect of niobium on the microstructure and wear resistance of iron-based alloy coating produced by plasma cladding. Materials Science and Engineering: A, 490(1-2), 57-61. https://doi.org/10.1016/j.msea.2008.02.041
  • Mishra, R., Basu, B., & Balasubramaniam, R. (2004). Effect of grain size on the tribological behavior of nanocrystalline nickel. Materials Science and Engineering: A, 373(1-2), 370-373. https://doi.org/10.1016/j.msea.2003.09.107
  • Cai, X., Xu, Y., Zhao, N., Zhong, L., Zhao, Z., & Wang, J. (2016). Investigation of the adhesion strength and deformation behavior of in situ fabricated NBC coatings by scratch testing. Surface and Coatings Technology, 299, 135-142. https://doi.org/10.1016/j.surfcoat.2016.05.004
  • Cai, X., Xu, Y., Liu, M., Zhong, L., & Bai, F. (2017). Preparation of a gradient nanostructured surface TaC layer-reinforced Fe substrate by in situ reaction. Journal of Alloys and Compounds, 712, 204-212. https://doi.org/10.1016/j.jallcom.2017.04.081
  • Tasyurek, M., & Duzcukoglu, H. (2021). Improving the wear behavior of epoxy resin with boron carbide reinforcement. Iranian Polymer Journal, 31(2), 169-184. https://doi.org/10.1007/s13726-021-00987-w
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları, Triboloji
Bölüm Research Article
Yazarlar

Rifat Yakut 0000-0003-0059-3785

Erken Görünüm Tarihi 26 Haziran 2024
Yayımlanma Tarihi
Gönderilme Tarihi 9 Nisan 2024
Kabul Tarihi 22 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 3

Kaynak Göster

APA Yakut, R. (2024). The effect of niobium carbide coating on wear behavior of grey cast iron via thermo-reactive diffusion process. European Mechanical Science, 8(3), 115-124.
AMA Yakut R. The effect of niobium carbide coating on wear behavior of grey cast iron via thermo-reactive diffusion process. EMS. Haziran 2024;8(3):115-124.
Chicago Yakut, Rifat. “The Effect of Niobium Carbide Coating on Wear Behavior of Grey Cast Iron via Thermo-Reactive Diffusion Process”. European Mechanical Science 8, sy. 3 (Haziran 2024): 115-24.
EndNote Yakut R (01 Haziran 2024) The effect of niobium carbide coating on wear behavior of grey cast iron via thermo-reactive diffusion process. European Mechanical Science 8 3 115–124.
IEEE R. Yakut, “The effect of niobium carbide coating on wear behavior of grey cast iron via thermo-reactive diffusion process”, EMS, c. 8, sy. 3, ss. 115–124, 2024.
ISNAD Yakut, Rifat. “The Effect of Niobium Carbide Coating on Wear Behavior of Grey Cast Iron via Thermo-Reactive Diffusion Process”. European Mechanical Science 8/3 (Haziran 2024), 115-124.
JAMA Yakut R. The effect of niobium carbide coating on wear behavior of grey cast iron via thermo-reactive diffusion process. EMS. 2024;8:115–124.
MLA Yakut, Rifat. “The Effect of Niobium Carbide Coating on Wear Behavior of Grey Cast Iron via Thermo-Reactive Diffusion Process”. European Mechanical Science, c. 8, sy. 3, 2024, ss. 115-24.
Vancouver Yakut R. The effect of niobium carbide coating on wear behavior of grey cast iron via thermo-reactive diffusion process. EMS. 2024;8(3):115-24.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter